
–

Going Immersive Tutorial

Christoph Anthes and Roland Landertshamer

September 14, 2009



Abstract

The inVRs framework was created to ease the design and the development of Networked Virtual
Environments. Typically such applications make use of stereoscopic multi-display installations
and tracking systems as well as a variety of exotic input devices. This document provides a
brief introduction on how to use inVRs with multi-display installations and a variety of tracking
systems. It demonstrates how to develop a simple object viewer using basic navigation, interaction
on typical Virtual Reality installations with a hands-on example.
After going through the tutorial, the user will be able to navigate through a dataset and change
a few parameters of the dataset.

i



Contents

Abstract i

Contents i

1 Introduction 1
1.1 Tutorial Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Wrapping Functionality 4
2.1 Using the ApplicationBase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Using the OpenSGApplicationBase . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Initial Tutorial Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Immersive Displays 13
3.1 Different Types of Immersive Displays . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Using the CAVE Scene Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Configuring the CAVE Scene Manager . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Displaying Virtual Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Using the Input Interface 21
4.1 Different Types of Input Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Mapping Input on the Abstract Controller . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Writing own Devices for the Abstract Controller . . . . . . . . . . . . . . . . . . . 23
4.4 Interconnecting own Devices with inVRs . . . . . . . . . . . . . . . . . . . . . . . . 33
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Working with Avatars 38
5.1 Modelling and Exporting Avatars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 Using Avatara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Integrating an Avatara Avatar into the tutorial . . . . . . . . . . . . . . . . . . . . 39
5.4 Testing the avatar without a tracking system . . . . . . . . . . . . . . . . . . . . . 41
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Coordinate Systems 44
6.1 User Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 Visualizing Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Outlook 49
7.1 Funky Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

ii



Contents Contents

Bibliography 51

List of Figures 53

Listings 54

Appendix 55

1



Chapter 1

Introduction

The inVRs framework [AV06] was designed to ease the creation of Networked Virtual Environ-
ments (NVEs). Considering the concept of NVEs not only desktop environments, but rather
truly interconnected Virtual Reality (VR) applications are falling in this category. This class of
applications makes use of stereoscopic displays, which are often implemented as multi-display in-
stallations. These displays are normally equipped with 3D tracking systems to allow for intuitive
user interaction.
Many libraries for accessing tracking systems and even more types of such systems exist. The
input used in a VR application is often not solely provided by position tracking, all types of arbi-
trary devices can be used to generate input to VR applications.
In order to represent the user in an NVE often 3D models, or so called avatars, are integrated in
the scene to display remote users. Depending on the amount of given sensors they can be animated
in a fairly realistic manner.
Users of this tutorial should already be familiar with the first part of the inVRs tutorial series the
Medieval Town Tutorial in order to understand the basic concepts of the framework. With the
basic knowledge of the inVRs framework the readers will now be able to extend their knowledge
into the immersive sector.
Many aspects of the initial tutorial will be simplified and abstracted and additional aspects like
input devices, displays and coordinate system will be explained in depth.

1.1 Tutorial Overview

Initially the reader will learn how to wrap up the cumbersome configuration setup which was
explained in detail in the Medieval Town Tutorial in order to get an insight in the frameworks
inner workings. The tutorial will provide a brief introduction into the basics of immersive displays
as well as 3D tracking systems and common VR input devices. It will be described how to configure
the displays and how to write own input device drivers, by using existing drivers and libraries. The
different coordinate systems will be used in conjunction with the user representations to display
remote users.
The following topics will be explained in the context of the inVRs framework:

• Wrapping Functionality

• Immersive Displays

• Using the Input Interface

• Coordinate Systems

• Tracking and Avatars

1



Chapter 1 - Introduction 1.2. Outline

At the end of the tutorial the readers should be able to develop their own interactive multi-user
applications for CAVEs [CNSD+92], Head-Mounted Displays (HMDs) [Sut68], curved displays
and similar devices. Position tracking systems can be used for interaction and are incorporated to
display remote users. An abstract virtual world will be displayed and acts as a proxy for arbitrary
VEs.

Figure 1.1: The Going Immersive Application

Figure 1.1 illustrates the resulting application form the completed Going Immersive Tutorial. The
left side of the figure gives an overview on the scene, while the right side of the figure shows the
coordinate systems of the avatar.

1.2 Outline

The chapters of this tutorial cover the following topics:

• Chapter 2 - Wrapping Functionality
The cumbersome setup of an inVRs application as seen in the first tutorial is replaced by
using a wrapper class. This application base is introduced and explained in this chapter. The
generic abstract class application base is used as a super class for the actual implementation
for OpenSG scene graphs.

• Chapter 3 - Immersive Displays
A variety of immersive displays is introduced as is the setup of the framework in order
to demonstrate the configuration of these displays. The inVRs framework uses the CAVE
Scene Manager in connection with OpenSG in order to generate graphics output on arbitrary
rectangular display panes. It is explained how to configure your VR display and how to
interconnect it to the inVRs framework.

• Chapter 4 - Using the Input Interface
These previously mentioned displays often come with a variety of specific input devices. The
reader will learn how to interconnect already available or own devices to inVRs, by writing
specific drivers for the input interface.

• Chapter 5 - Working with Avatars
To display remote users avatars can be used and the data gathered from the tracking systems
can be mapped on these avatars. Different types of avatars exist. A more advanced avatar
will be introduced as the one experienced in the first tutorial.

• Chapter 6 - Coordinate Systems
Coordinate systems are a key aspect for displaying avatars, and implementing interaction
when tracking systems are used. The dependencies of the different world and user coordinate
systems will be explained in depth.

2



Chapter 1 - Introduction 1.2. Outline

• Chapter 7 - Outlook
The taught aspects of inVRs are recaptured and a brief outlook on what else could be
explored using the framework is given.

3



Chapter 2

Wrapping Functionality

In general it is possible to develop an inVRs application as described in the first tutorial – the
Medieval Town Tutorial. Much of the code developed in that tutorial is generic and is already
available in a so called ApplicationBase which is part of the inVRs SystemCore. The applica-
tion developer can derive from this class to spare the implementation of the generic code parts.
Besides the general existing ApplicationBase also a scene graph specific implementation the
OpenSGApplicationBase is available as an additional tool. This class will be used in this tutorial
as a basis.

2.1 Using the ApplicationBase

Before we will start with the tutorial let’s have a look at the generic ApplicationBase class.
The key functions which are already provided in the ApplicationBase class are described in the
following:

• virtual bool preInit(const CommandLineArgumentWrapper& args)

This method is called before the initialization of the application base. It is the first method
called in an inVRs application after the constructors are executed. The application developer
can overwrite this method to insert code which has to be executed before all other parts of
the application.

• virtual void initCoreComponentCallback(CoreComponents comp)

This method is called by the SystemCore when the components of this class are initialized.
It can be overwritten by the application developer to get notifications before each component
is initialized.

• virtual void initInputInterfaceCallback(ModuleInterface* moduleInterface)

This method is called by the InputInterface when the modules of this class are initialized.
It can be overwritten by the application developer to get notifications before each module
of the InputInterface is initialized.

• virtual void initOutputInterfaceCallback(ModuleInterface* moduleInterface)

This method is called by the OutputInterface when the modules of this class are initialized.
It can be overwritten by the application developer to get notifications before each module
of the OutputInterface is initialized.

• virtual void initModuleCallback(ModuleInterface* module)

This method is called by the SystemCore when the general modules are initialized. It can be
overwritten by the application developer to get notifications before each module is initialized.

4

http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html
http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classSystemCore.html
http://doxygen.invrs.org//classInputInterface.html
http://doxygen.invrs.org//classInputInterface.html
http://doxygen.invrs.org//classOutputInterface.html
http://doxygen.invrs.org//classOutputInterface.html
http://doxygen.invrs.org//classSystemCore.html


Chapter 2 - Wrapping Functionality 2.1. Using the ApplicationBase

• virtual bool disableAutomaticModuleUpdate()

This method can be overwritten by the application developer if the updates of the different
modules should be done manually in the application. By default the update of all registered
modules is done automatically by the ApplicationBase class. If this class is overwritten
and it returns true then the automatic module update is omitted and the virtual method
manualModuleUpdate() is called instead (see next line).

• virtual void manualModuleUpdate(float dt)

This method is called automatically when the disableAutomaticModuleUpdate() method
described above was overwritten accordingly. The default implementation of this method in
the ApplicationBase class does nothing, so ensure to overwrite this method if you want to
do the module updates manually.

Other functions have to be implemented by the application developer:

• virtual std::string getConfigFile(const CommandLineArgumentWrapper& args)

The main configuration file has to be passed to inVRs. It is typically loaded from a fixed
path or passed as a command line argument.

• virtual bool init(const CommandLineArgumentWrapper& args)

The method is called after the initialization of all inVRs components, interfaces and modules.
It is intended to be used by the application developer for the initialization of the main
application.

• virtual void run()

This method is called by inVRs after all initialization steps were finished and the runnable
components like the EventManager and the Network module were started. In this method
the application developer should implement the main application loop. The implemented
main loop has to call the ApplicationBase :: globalUpdate() method every loop iteration
in order to update the inVRs components.

• virtual void display(float dt)

This method is called by the ApplicationBase :: globalUpdate() method in order to update
the main application. The application developer should prefer this method for updates
compared to the implementation in the main loop because some important inVRs updates
like the Controller or the TransformationManager were executed before this method is
called.

• virtual void cleanup()

This method should be implemented in order to clean up the application. It is called by the
ApplicationBase :: globalCleanup() method.

Other methods which have to be called by the application developer:

• bool start(int argc, char** argv)

This method starts the application. It should be called out of the main method after an
instance of the application object was created.

• void globalUpdate()

The method updates the inVRs components and forwards the update-command to the in-
herited display method. It must be called out of the application main loop.

5

http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classEventManager.html
http://doxygen.invrs.org//classNetwork.html
http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classTransformationManager.html
http://doxygen.invrs.org//classApplicationBase.html


Chapter 2 - Wrapping Functionality 2.2. Using the OpenSGApplicationBase

• void globalCleanup()

The method cleans up the inVRs components. It must be called by the application be-
fore finishing. This method automatically forwards the command to the inherited cleanup
method with which the user can clean up the main application.

Besides the provided methods several member variables can be used when inheriting from the
ApplicationBase:

• SceneGraphInterface* sceneGraphInterface

This member variable points to the used SceneGraphInterface. If no SceneGraphInterface is
used the pointer value is NULL.

• ControllerManagerInterface* controllerManager

This member variable is a pointer to the ControllerManager. If no ControllerManager is
used the pointer value is NULL.

• NetworkInterface* networkModule

This member variable points to the Network module. If no Network module is loaded the
pointer valus is NULL.

• NavigationInterface* navigationModule

This member variable points to the Navigation module. If no Navigation module is loaded
the pointer points to NULL.

• InteractionInterface* interactionModule

This member variable points to the Interaction module. If no Interaction module is loaded
the pointer points to NULL.

• User* localUser

This variable points to the User object for the local user.

• CameraTransformation* activeCamera

This variable is a pointer to the camera transformation object of the local camera.

Using the ApplicationBase class allows for developing applications without having to care about
the main inVRs components. Although this reduces the lines of code which have to be written
there is still much to implement, e.g. for the window management, or the display methods for
rendering the scene.

2.2 Using the OpenSGApplicationBase

To further simplify the application development the OpenSGApplicationBase was developed. This
class is inherited from the basic ApplicationBase class and implements additional functionality
for window management, rendering and input device support. In this helper class the decision
whether immersive displays with the help of the CAVE Scene Manager are used for output or a
simple GLUT window is used is taken.
The key functions which are already provided in the OpenSGApplicationBase or it’s derived
classes are described in the following:

• virtual bool preInitialize(const CommandLineArgumentWrapper& args)

This method is called before the initialization of the application base. It is the first method
called in an inVRs application right after OpenSG was initialized (via osgInit()). The
application developer can overwrite this method to insert code which has to be executed
before all other parts of the application. NOTE: Take care to not confuse this method
with the ApplicationBase :: preInit() method, since this one is implemented by the
OpenSGApplicationBase and must NOT be overwritten!

6

http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html
http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html
http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html


Chapter 2 - Wrapping Functionality 2.2. Using the OpenSGApplicationBase

• virtual void initCoreComponentCallback(CoreComponents comp)

This method is called by the SystemCore when the components of this class are initialized.
It can be overwritten by the application developer to get notifications before each component
is initialized.

• virtual void initInputInterfaceCallback(ModuleInterface* moduleInterface)

This method is called by the InputInterface when the modules of this class are initialized.
It can be overwritten by the application developer to get notifications before each module
of the InputInterface is initialized.

• virtual void initOutputInterfaceCallback(ModuleInterface* moduleInterface)

This method is called by the OutputInterface when the modules of this class are initialized.
It can be overwritten by the application developer to get notifications before each module
of the OutputInterface is initialized.

• virtual void initModuleCallback(ModuleInterface* module)

This method is called by the SystemCore when the general modules are initialized. It can be
overwritten by the application developer to get notifications before each module is initialized.

• virtual void cbGlutSetWindowSize(int w, int h)

This method is called whenever the size of the window is changed. The application developer
can overwrite this functions if this information is needed by the application.

• virtual void cbGlutMouse(int button, int state, int x, int y)

This method is called whenever a mouse button is pressed inside the application window. It
can be overwritten to get notifications for mouse button presses. Note that it is recommended
to get this information via the inVRs ControllerManager using the GlutMouseDevice in-
stead!

• virtual void cbGlutMouseMove(int x, int y)

This method is called whenever the mouse cursor is moved over the application window. It
can be overwritten to get notifications for mouse motion. Note that it is recommended to get
this information via the inVRs ControllerManager using the GlutMouseDevice instead!

• virtual void cbGlutKeyboard(unsigned char k, int x, int y)

This method is called whenever a keyboard key is pressed. It can be overwritten to get
notifications for keyboard input. Note that it is recommended to get this information via
the inVRs ControllerManager using the GlutKeyboardDevice class.

• virtual void cbGlutKeyboardUp(unsigned char k, int x, int y)

This method is called whenever a keyboard key is released. It can be overwritten to get
notifications for keyboard input. Note that it is recommended to get this information via
the inVRs ControllerManager using the GlutKeyboardDevice class.

Other functions have to be implemented by the application developer:

• virtual std::string getConfigFile(const CommandLineArgumentWrapper& args)

This method must return the url to the main configuration file (usually called general.xml).
This file is needed by inVRs in order to load and configure the core components, interfaces
and modules. If the url to the configuration file should be passed via command line then
this value can be obtained from the CommandLineArgumentWrapper parameter.

7

http://doxygen.invrs.org//classSystemCore.html
http://doxygen.invrs.org//classInputInterface.html
http://doxygen.invrs.org//classInputInterface.html
http://doxygen.invrs.org//classOutputInterface.html
http://doxygen.invrs.org//classOutputInterface.html
http://doxygen.invrs.org//classSystemCore.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classGlutMouseDevice.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classGlutMouseDevice.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classGlutKeyboardDevice.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classGlutKeyboardDevice.html
http://doxygen.invrs.org//classCommandLineArgumentWrapper.html


Chapter 2 - Wrapping Functionality 2.2. Using the OpenSGApplicationBase

• virtual bool initialize(const CommandLineArgumentWrapper& args)

This method can be used in order to initialize the application. The method is called after
the inVRs components (core, interfaces and modules) were initialized. The parameter of
type CommandLineArgumentWrapper can be used to read options passed via the command
line.

• virtual void display(float dt)

This method is called every application loop cycle and can be used to update the application.
The parameter dt contains the elapsed time in milliseconds since the previous method call.

• virtual void cleanup()

The method should be used in order to cleanup the application. It is called right before the
application is terminated.

Other methods which must be called by the application developer:

• void setRootNode(NodePtr root)

In this method the root node of the scene graph is set in the used SceneManager. Depending
on the configuration this is either the SimpleSceneManager or the CAVESceneManager.

Other methods which can be called by the application developer:

• void setPhysicalToWorldScale(float scale)

This method is important when writing applications for VR installations like a CAVE. By
calling this method you can set the scale-factor from the physical units provided by your
tracking system to the world units used in the application. For example if your tracking
systems provides centimeter values and your application is modeled in meters then you
should pass 0.01 to this method. Don’t forget to call this method when using tracking
systems in order to provide a correct visualization.

• void setNearClippingPlane(float nearPlane)

This method allows to set the near clipping plane of your application.

• void setFarClippingPlane(float farPlane)

The method allows to set the far clipping plane of your application.

• void setStatistics(bool onOff)

This method activates or deactivates the display of the SceneManager specific statistics.

• void setWireframe(bool onOff)

This method allows to switch between normal and wireframe rendering.

• void setHeadlight(bool onOff)

By calling this method the headlight (default light used in OpenSG) can be activated or
deactivated.

• bool setBackgroundImage(std::string imageUrl, int windowIndex = -1)

This method sets the background image for the windows with the passed index. When no
window index is passed the image is used as background for all active windows. NOTE: Us-
ing an image background in OpenSG may reduce the overall performance of your application.
Avoid using this method or only use it with low resolution images!

• void setEyeSeparation(float eyeSeparation)

This method allows to set the eye separation when using the CAVESceneManager for output.

8

http://doxygen.invrs.org//classCommandLineArgumentWrapper.html
http://www.opensg.org/doc-1.6.0//classosg_1_1SimpleSceneManager.html
http://doxygen.invrs.org//classCAVESceneManager.html
http://doxygen.invrs.org//classCAVESceneManager.html


Chapter 2 - Wrapping Functionality 2.3. Initial Tutorial Application

• float getEyeSeparation()

The method returns the current eye separation.

Besides the already provided methods several member variables which are inherited from the class
ApplicationBase can be used:

• SceneGraphInterface* sceneGraphInterface

This member variable points to the used SceneGraphInterface. If no SceneGraphInterface is
used the pointer value is NULL.

• ControllerManagerInterface* controllerManager

This member variable is a pointer to the ControllerManager. If no ControllerManager is
used the pointer value is NULL.

• NetworkInterface* networkModule

This member variable points to the Network module. If no Network module is loaded the
pointer valus is NULL.

• NavigationInterface* navigationModule

This member variable points to the Navigation module. If no Navigation module is loaded
the pointer points to NULL.

• InteractionInterface* interactionModule

This member variable points to the Interaction module. If no Interaction module is loaded
the pointer points to NULL.

• User* localUser

This variable points to the User object for the local user.

• User* localUser

This variable points to the User object for the local user.

• CameraTransformation* activeCamera

This variable is a pointer to the camera transformation object of the local camera.

In order to write your own inVRs application using OpenSG your application should inherit from
the OpenSGApplicationBase.

2.3 Initial Tutorial Application

The first thing which has to be done is to implement a class for the application which inherits
from the OpenSGApplicationBase. This class is called GoingImmersive in our case. The following
listing shows the declaration of this class:

#include <OpenSGApplicationBase/OpenSGApplicationBase.h>

#include <inVRs/SystemCore/WorldDatabase/WorldDatabase.h>

OSG_USING_NAMESPACE

class GoingImmersive: public OpenSGApplicationBase {

...

}; // GoingImmersive

Listing 2.1: GoingImmersive.cpp - Top Part of application

9

http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html
http://doxygen.invrs.org//classGoingImmersive.html


Chapter 2 - Wrapping Functionality 2.3. Initial Tutorial Application

In this tutorial the whole application will be developed in a single .cpp file without using a header
file. This is done in order to simplify the documentation but could be splitt up into separate a
header and source file as well.
After the class is declared we have to define the members of our class. In the first step of our
application development the only member variable we need is the url to the main inVRs config-
uration file. This member variable will be initialized in the constructor of the GoingImmersive
class:

class GoingImmersive: public OpenSGApplicationBase {

private:

std:: string defaultConfigFile; // config file

public:

GoingImmersive () {

defaultConfigFile = "config/general.xml";

} // constructor

...

}; // GoingImmersive

Listing 2.2: GoingImmersive.cpp - Top Part of class

Besides the constructor the application class must also contain a destructor. In this destructor the
OpenSGApplicationBase :: globalCleanup() method must be called in order to free all memory
reserved by the different inVRs components.

...

~GoingImmersive () {

globalCleanup ();

} // destructor

...

Listing 2.3: GoingImmersive.cpp - Destructor

Since the OpenSGApplicationBase is an abstract class several methods have to be implemented in
the derived class. The first method which must be implemented is the getConfigFile() method.
This method must return the url to the main inVRs configuration file. The default configuration
file is already stored in a member variable. Besides the default configuration we also want to
support the user to pass the url to a different configuration file via the command line. Therefore
the CommandLineArgumentWrapper class can be used. The following implementation shows how
to support the passing of the configuration file url via the command line argument config=...:

...

std:: string getConfigFile(const CommandLineArgumentWrapper& args) {

if (args.containOption("config"))

return args.getOptionValue("config");

else

return defaultConfigFile;

} // getConfigFile

...

Listing 2.4: GoingImmersive.cpp - getConfigFile()

The next method which has to be implemented is the initialize() method. This method
is called automatically after all inVRs components were initialized. In this method we will set

10

http://doxygen.invrs.org//classGoingImmersive.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html
http://doxygen.invrs.org//classCommandLineArgumentWrapper.html


Chapter 2 - Wrapping Functionality 2.3. Initial Tutorial Application

the root node of the scene graph and the initial transformation of the user in the virtual world.
Therefore the member variables sceneGraphInterface and localUser which are inherited from
the ApplicationBase class are used:

...

bool initialize(const CommandLineArgumentWrapper& args) {

OpenSGSceneGraphInterface* sgIF =

dynamic_cast <OpenSGSceneGraphInterface *>( sceneGraphInterface);

// must exist because it is created by the OutputInterface

if (!sgIF) {

printd(ERROR , "GoingImmersive :: initialize (): Unable to obtain

SceneGraphInterface !\n");

return false;

} // if

// obtain the scene node from the SceneGraphInterface

NodePtr scene = sgIF ->getNodePtr ();

// set root node to the responsible SceneManager (managed by

OpenSGApplicationBase)

setRootNode(scene);

// set our transformation to the start transformation

TransformationData startTrans =

WorldDatabase :: getEnvironmentWithId (1) ->getStartTransformation (0);

localUser ->setNavigatedTransformation(startTrans);

return true;

} // initialize

...

Listing 2.5: GoingImmersive.cpp - initialize()

Further methods which have to be implemented are the display() and the cleanup() method.
In our current application we don’t have to update any information and also don’t have to clean
up anything, so both methods are empty:

...

void display(float dt) {

} // display

void cleanup () {

} // cleanup

...

Listing 2.6: GoingImmersive.cpp - display() and cleanup()

This is all we have to implement in our first GoingImmersive class. Finally we need a main
method which creates an instance of our application class and starts the application:

...

int main(int argc , char** argv) {

GoingImmersive* app = new GoingImmersive ();

if (!app ->start(argc , argv)) {

printd(ERROR , "Error occured during startup !\n");

delete app;

return -1;

} // if

delete app;

11

http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classGoingImmersive.html


Chapter 2 - Wrapping Functionality 2.4. Summary

return 0;

} // main

Listing 2.7: GoingImmersive.cpp - main method

That was the whole code of the initial application. Additionally to this code a predefined set of
configuration files is contained in the tutorial package. A basic introduction to the configuration
files was already given in the previous tutorial – the Medieval Town Tutorial. Additionally a
separate manual on Configuring the inVRs Framework can be found on the inVRs homepage
which describes the single configuration files in detail. Thus the configuration files will not be
explained at this point.
When executing this application you will see a predefined scene containing an plane, a coordinate
system and the inVRs logo. Due to the configured navigation module you can navigate through
this environment via mouse and keyboard input.

2.4 Summary

This chapter has given an insight into concepts of wrapping setup of inVRs applications. As a
generic approach the application base was introduced. Additionally the OpenSGApplicationBase
was described as an implementation of the generic approach. By using application bases you
should be able to develop basic inVRs applications with a few lines of code.
The following chapter will show how to interconnect immersive displays to your inVRs application.

12



Chapter 3

Immersive Displays

The inVRs framework is designed to support a large variety of immersive displays. Typically
immersive displays share the feature of generating stereoscopic output on multiple display panes.
By using OpenSG1 [Rei02] on the scene graph side the display on such stereoscopic multi-display
installations can be considered as an out-of-the-box feature. The implementation of the inVRs
output interface uses OpenSG for display purposes. The specific multi-display functionality is
abstracted and handled by the external tool – the CAVE Scene Manager.
Generating 3D audio is also supported by inVRs but is not part of this tutorial. Aspects like
haptic displays or motion platforms are so far not covered at all by the framework, although it
would be possible to write drivers for such displays and integrate them into output interface.

3.1 Different Types of Immersive Displays

A huge variety of immersive displays exist. inVRs is focusing on stereoscopic multi-display instal-
lations. Some examples for such displays would be a CAVE or an HMD.
To reduce the problem of multi-display installations there are basically two big setup possibilities.
Either the displays are arranged in a curved or dome-like fashion or in some kind of rectangular
shape. Although an interesting aspect, this part of the tutorial does not concentrate on the dif-
ferent display technologies, but simply on the different display setups, focusing on how to arrange
and configure the display planes.
Many displays are common for VR and some are rather rare. Figure 3.1 illustrates the most
prominent VR displays, a CAVE on the left side and an HMD on the right side.

Figure 3.1: A CAVE and an HMD
1http://www.opensg.org

13

http://www.opensg.org


Chapter 3 - Immersive Displays 3.2. Using the CAVE Scene Manager

Other installations like Curved Screens or Powerwalls are supported as well by the framework.
While a powerwall could be used with the most simple setup, curved displays require a bit for
math for setting them up properly. Figure 3.2 show two wide spread displays which are commonly
used for larger audiences, where the previously introduced displays are more applicable for single
users.

Figure 3.2: A Curved Screen and a Powerwall

There are many other setups like for example the ImmersaDesk [CPS+97] or the Responsive
Workbench [KF94].
We will now first have a brief look on how to configure the setup of such immersive displays. In
the next step the interconnection of these displays with the inVRs framework will be explained
in detail.

3.2 Using the CAVE Scene Manager

One of the main tools used by inVRs for handling multi-display functionality is the CAVE Scene
Manager. The stereoscopic multi-display functionality in general is covered by using OpenSG as
a scene graph. The CAVE Scene Manager is simply used for wrapping OpenSG multi-display
support. Additionally it offers the parsing of human readable configuration files. It is designed as
a counterpart to OpenSG’s SimpleSceneManager.
It was originally developed by Adrian Haffegee as a side product of his MSc Thesis [Haf04,
HJAA05]. It acts as a wrapper around the OpenSG multi-display and clustering functionality.
The CAVE Scene Manager is not part of the basic inVRs distribution but it can be downloaded
and installed as an additional tool. More detail is provided in the CAVE Scene Manager Manual.
The tool consists of four main header and source files:

• OSGCAVESceneManager.h

This source file contains the main functionality and user API of the scene manager. It allows
to attach a scene to main node and interact with it in a similar way than the SimpleScene-
Manager.

• OSGCAVEConfig.h

This file contain functionality for parsing, loading, and setting the scene managers configu-
ration. The configuration of the scene manager is mainly concerned with display setup.

• OSGCAVEWall.h

This source file deals with the setup of wall displays. Typically several projection panes are
used for displaying an immersive scene.

14

http://www.opensg.org/doc-1.6.0//classosg_1_1SimpleSceneManager.html


Chapter 3 - Immersive Displays 3.3. Configuring the CAVE Scene Manager

• appctrl.h

This source file contains functionality for starting and shutting down display servers. It
wraps as well the setup of the OpenSG MultiDisplayWindow

3.3 Configuring the CAVE Scene Manager

The configuration of the CAVE Scene Manager is highly intuitive and can be used to support
pretty much every multi-display installation, which consists of rectangular drawing panes.
The configuration takes typically keywords described in the following and a set of keyword-specific
parameters separated by spaces. Comments are indicated by a # following the comment.
The most important keywords for the configuration of the CAVE Scene Manager are given in the
following list:

• Walls
This keyword is used to define a list of display panes which are to be used.

• WallDisplay
A detailed wall configuration is provided after a WallDisplay keyword. Name, display (e.g.
:0.1) and resolution for the display pane is provided. Additional offsets can be can be defined.
These offsets can become interesting if overlaps of displays are used.

• ProjectionData
This keyword defines the alignment of the different projection panes.

• DisplayMode
The display mode can be set either to mono for monoscopic display or to stereo for stereo-
scopic display.

• InterocularDistance
The eye separation is provided as a number and an optional unit following afterwards.

• Origin
This keyword describes where the coordinate origin in physical space is located. The data
is used for correct rendering of the VE.

• CAVEWidth
In case a CAVE-like display is used the width is provided by this parameter.

• CAVEHeight
If a CAVE is used the height can be defined by using this keyword.

• Units
The units can be either meters, centimeters or foot. Typically inVRs make use of centimeters
as units.

Many more keywords are available for the configuration of the CAVE Scene Manager and respec-
tively tha multi-display setup. They will be explained in depth in the CAVE Scene Manager
Manual. The source code of the class OSGCAVEConfig provides additional details on the configu-
ration of the CAVE Scene Manager.
The following example will give an idea how to setup your immersive display for inVRs. It provides
the configuration of a typical CAVE setup.

################################################################################

# Specify here which CAVE walls you want to run and in which graphics pipe #

# walldisplays for the jku -cave (has 4 walls) #

################################################################################

Walls front left right floor

15

http://www.opensg.org/doc-1.6.0//classosg_1_1MultiDisplayWindow.html
http://doxygen.invrs.org//classOSGCAVEConfig.html


Chapter 3 - Immersive Displays 3.3. Configuring the CAVE Scene Manager

################################################################################

# Display information for walls (pipe # & (optional) window geometry) #

# window geometry: XDIMxYDIM+XOFFSET+YOFFSET #

# 2006 -11 -08 ZaJ: new layout #

################################################################################

WallDisplay front :1.0 1136 x1136 +0+0

WallDisplay right :1.1 1136 x1136 +0+0

WallDisplay left :1.2 1136 x1136 +0+0

WallDisplay floor :1.3 1136 x1136 +0+0

################################################################################

# 2008 -11 -24 LeB: new layout #

# info on refpoint for JKU CAVE: center of floor plane (X, x=0,y=0,z=0) #

# #

# P2 +--------------------------+ #

# | x=-155 | #

# | y=0 | #

# | z=-155 | #

# | | #

# | | #

# | X | #

# | | #

# | | #

# | x=-155 x=155 | #

# | y=0 y=0 | #

# | z=-155 z=155 | #

# P1 +--------------------------+ P3 #

# #

# ProjectionData screenx * wall P1 P2 P3 #

################################################################################

ProjectionData floor * wall -120 0 120 -120 0 -120 120 0 120 centimeters

################################################################################

# Display mode - mono or stereo #

################################################################################

DisplayMode stereo

################################################################################

#InterocularDistance <distance > <units> #

################################################################################

InterocularDistance 6.0 cm

################################################################################

# Origin of coordinates of the CAVE (given in distance to the walls) #

# distance to left wall distance to floor distance to front wall #

################################################################################

Origin 120.0 0.0 120.0 centimeters

# Cave width (& depth)

CAVEWidth 240.0 centimeters

# Cave height

CAVEHeight 240.0 centimeters

################################################################################

# Cave units for GL coordinates (Meters or feet) #

# - units tracking data will be given in #

################################################################################

Units centimeters

################################################################################

# Size of screen & viewing distance - defines simulator viewing frustum #

################################################################################

SimulatorView 10 7.5 2

################################################################################

16



Chapter 3 - Immersive Displays 3.4. Displaying Virtual Environments

# Which type of wand is being used (mouse or PC) #

################################################################################

Wand daemon

################################################################################

# Type of tracking (birds , polhemus , logitech , mouse , or simulator) #

################################################################################

TrackerType daemon

################################################################################

# Various Settings #

################################################################################

HideCursor y

TrackerDaemonKey 4129

ControllerDaemonKey 4128

Listing 3.1: GoingImmersive.cpp

3.4 Displaying Virtual Environments

After a configuration file for the CAVE Scene Manager was created we can start to update the
initial GoingImmersive application to run on the configured display(s). If you haven’t created a
configuration file yet or you want to test this application on a monoscopic desktop system you can
use the configuration file mono.csm which is contained in this tutorial.
Before we can start updating the application we have to prepare the CAVE Scene Manager to be
able to display the application. Therefore we have to understand how the visualization is realized
by this class. The CAVE Scene Manager is separated into two individual parts, the client part
and the render server part. The client part is the CAVE Scene Manager class itself. It is used by
the application to manage the OpenSG scene graph. In general the CAVE Scene Manager can be
used independently with OpenSG offering an extensive user API. We will skip the description of
the API since inVRs will take care of most of the functionality.
For displaying the scene the render servers are used. The render servers are stand alone applications
which are receiving and rendering the scene graph information from the client part of the CAVE
Scene Manager via a network connection. They are very similar to the basic OpenSG render
servers as introduced in Oliver Aberts’ OpenSG Tutorial [Abe04].
In order to run an application on a multi-display system multiple render servers have to be started.
One server is used for one display pane. Depending on your system this can either be done by
the application automatically or you have to start the servers in advance by hand. The automatic
startup of the render server(s) works in general when these can be run on the same host as the
main application. This is true for example on a single-display setup which is run on a single host,
but also on a multi-display setup when the graphics pipes are directly accessible from the host the
application is started (e.g. shared memory systems with multiple X-servers). On cluster systems
the render servers usually must run on the single graphics nodes which means that they can not
be started automatically by inVRs. In this section we will present the configuration for a single
monoscopic display with automatic render-server startup but also describe the steps which have
to be executed in order to start the servers manually (for use on multi-display sytems based on a
cluster).
To be able to start the render server automatically the binary of the render server has to be
placed into the folder from where the application is executed. For the monoscopic server the
binary is called server-mono, for stereoscopic visualizations you have to use the server-stereo
binary. Copy these binaries from bin subfolder of your inVRs installations into your application
directory GoingImmersive now. Furthermore these binaries need to find the CAVE Scene Manager
library (libCAVESceneManager.so on Linux systems, libCAVESceneManager.dylib on Mac OSX
systems, or CAVESceneManager.dll on windows systems). In order to find this library you can
either add the lib path of your inVRs installation directory to your library path environment

17



Chapter 3 - Immersive Displays 3.4. Displaying Virtual Environments

variable or you can simply copy the file into the GoingImmersive directory.
Now that the binary for the render server is available we have to tell the application to use the
CAVE Scene Manager instead of the SimpleSceneManager. When writing an application from
scratch without using the ApplicationBase helpers this must be changed in the source code. Since
we are using the OpenSGApplicationBase class we can do this by simply adding some entries in
the general inVRs configuration file general.xml.
The useCSM entry tells the OpenSGApplicationBase to use the CAVESceneManager instead of the
default SimpleSceneManager. The second argument csmConfigFile defines which configuration
file should be used. In our case we are using the file mono.csm which is included in this tutorial. In
the next option the automatic startup of the render servers is configured. If this entry is missing
or set to false you will have to start the render server(s) manually. The fourth entry defines the
relation between the world coordinates and the units used in the real world. In this application
the objects in the virtual world are modeled approximately in the size of meters and the units
used in the configuration file mono.csm are centimeters, so the scale value must be 0.01. Finally
we set a background image for the control window, which is the window where the input goes to.
Note that using a background image for the control window can drop performance depending on
the size of this image. So if you get render performance problems try to either use lower resolution
images or don’t use any image at all.

<OpenSGApplicationBase >

<option key="useCSM" value="true"/>

<option key="csmConfigFile" value="mono.csm"/>

<option key="startRenderServers" value="true"/>

<option key="physicalToWorldScale" value="0.01"/>

<option key="controlWindowImage" value="inVRs_controlwindow.png"/>

</OpenSGApplicationBase >

Listing 3.2: XmlSnippets1.xml - Snippet1-1 → general.xml

Additionally we have to add the paths to the location of the CAVE Scene Manager configura-
tion, which is stored in the configuration file indicated in the previous snippet with the attribute
csmConfigFile:

<path name="CAVESceneManagerConfiguration"

directory="config/outputinterface/cavescenemanager"/>

Listing 3.3: XmlSnippets1.xml - Snippet1-2 → general.xml

The path for loading images has to be set as well. We will need it later on for setting a background
image.

<path name="Images" directory="images/"/>

Listing 3.4: XmlSnippets1.xml - Snippet1-3 → general.xml

That’s all we have to do in order to run the application using the CAVE Scene Manager. When
you start the application now you will notice some additional console output of the CAVE Scene
Manager telling you if the render server(s) could be started successfully or the reason why it could
not be started. If the render server(s) could not be started automatically you should be able to
see the problems on the debug output and try to start the render server(s) manually. You don’t
even have to restart the application for this because it is waiting until all needed render servers
are available before the application continues with the startup.
When the application has started up successfully you can see two windows (assuming you are using
the mono.csm configuration file), one window is used for the render server and another window
which we call the control window.

18

http://www.opensg.org/doc-1.6.0//classosg_1_1SimpleSceneManager.html
http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html
http://www.opensg.org/doc-1.6.0//classosg_1_1SimpleSceneManager.html


Chapter 3 - Immersive Displays 3.4. Displaying Virtual Environments

The control window is the same window which would be used in a SimpleSceneManager application
to render the scene. Since we are using the CAVE Scene Manager now the rendering is executed
on separate windows which are opened by the render servers. The control window is still visible
and is used for example to read the GLUT input. If you wan’t to control you application and you
are using the GLUT input the control window should be the active window.
In order to get rid of the ugly black background we now add a background image to be used in our
window. This is done in the following source code snippet by calling the setBackgroundImage()
method of the OpenSGApplicationBase class. Note that the usage of background images in
OpenSG can decrease the performance significantly, so don’t use images with a high resolution in
order to avoid low framerates.

setBackgroundImage("background_128.png");

Listing 3.5: CodeSnippets1.cpp - Snippet-1-1 → GoingImmersive.cpp

When building and starting the application now you should see the same result as shown in Figure
3.3:

Figure 3.3: Render server window (front) and control window (inVRs)

The left side of the illustration shows the actual application running on a display server while the
right side displays a control window which is the input and output window of our application.
With the help of the application base and very few code changes and simple configurations we are
able to use immersive displays.
Adapting the configuration of your setup only has to be done once. Generic files like the one for
monoscopic display or stereo display on desktop system are already provided with the distribution
of the CAVE Scene Manager.

19

http://www.opensg.org/doc-1.6.0//classosg_1_1SimpleSceneManager.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html


Chapter 3 - Immersive Displays 3.5. Summary

3.5 Summary

This chapter has given a very brief overview on common multi-display systems used in the field
of VR. CAVEs, HMDs, curved displays and powerwall installations were shortly introduced. As
a tool for setting up such displays for the inVRs framework the CAVE Scene Manager has been
described. An introduction on the configuration of the scene manager was given as well as a
description on how to interconnect it to inVRs.
You should now be able to display a very simple scene on an arbitrary visual output device. If you
have access to a VR installation it might be worth trying to configure the CAVE Scene Manager
for it and run your application on the VR system.
In the next chapter we will learn how to use typical VR input devices with our current application.
If you have CAVEs or other setups available you should then be able to fully run an inVRs
application on your VR system.

20



Chapter 4

Using the Input Interface

A huge variety of input devices can be thought of and a great set of them is available on the market
of VR installations. Often devices like wands are used in conjunction with tracking systems in
order to allow for user interaction. Considering the tracking as well as the input devices the inVRs
framework is designed to be totally technology agnostic.
In general the inVRs input interface could be extended to support all types of input, like speech
or gestures. So far an interface for the abstraction of the traditional input devices is provided
which reduces the whole data generated by arbitrary devices to a very simple types of data – axes,
buttons and sensors. This abstraction is exposed and later on accessed by the components and
the modules of the framework or an application developed with the inVRs framework.

4.1 Different Types of Input Devices

Two big categories of devices are available which generate input for VR applications, the input
devices providing input intentionally triggered by the user and the tracking systems offering posi-
tion and orientation data on sensors attached to the user or an input device.
In general a vast amount of input devices and tracking systems exist, based on very different tech-
nologies, which are typically accessed by two different kinds of libraries. Either low-level drivers
that are used to access the device directly or high-level libraries like VRPN1 [THS+01], Open-
Tracker2 [RS01, RS05], etc. which wrap together many different of these low-level libraries are
used to gather the input from the devices.

Figure 4.1: Some Typical VR Input devices
1http://www.cs.unc.edu/Research/vrpn/
2http://studierstube.icg.tu-graz.ac.at/opentracker/

21

http://www.cs.unc.edu/Research/vrpn/
http://studierstube.icg.tu-graz.ac.at/opentracker/


Chapter 4 - Using the Input Interface 4.2. Mapping Input on the Abstract Controller

Figure 4.2 shows some devices which are wide spread in the field of Virtual Reality. On the left
side a space mouse, emulating a 6 DOF sensor is shown, the middle illustrates a wand with buttons
and joystick and the right side of the figure shows a pair of pinch gloves which generate boolean
values on contact of the finger tips.

4.2 Mapping Input on the Abstract Controller

In the inVRs framework the actual data of the devices can be either taken directly from the low-
level drivers or alternatively from the high-level libraries 3. To support an input device an interface
between the driver or high-level library and the input interface of the framework is either provided
by inVRs already, as for example for trackD, GLUT, VRPN and an arbitrary UDP controller or
it has to be created by the application developer.
The inVRs framework chooses a very simplistic approach by taking three different types of data
into account as shown in the following list:

• Buttons
They provide boolean values

• Axes
They provide values along a slider

• Sensors
They provide 6DOF position values

These three different types of data can be accessed from the developed application or parts of the
framework. Typically models from the Navigation module or transition functions which form an
interaction technique of the Interaction module make use of such exposed abstracted data. User
defined modules or the application itself can access the data as well.
For access of the data an abstract Controller is configured inside the InputInterface. This
abstract controller exposes the values to the application parts and the framework. But before the
data can be provided a mapping between the devices or better their libraries and the Controller
has to take place.

Figure 4.2: An Example Mapping of the Input Interface
3if you know exactly what device you intend to use it might make sense to connect it by writing an interface

connecting directly to the low-level driver in order to increase performance

22

http://doxygen.invrs.org//classNavigation.html
http://doxygen.invrs.org//classInteraction.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classInputInterface.html
http://doxygen.invrs.org//classController.html


Chapter 4 - Using the Input Interface 4.3. Writing own Devices for the Abstract Controller

An example mapping is given in Figure 4.2. The devices are shown in the left column, the middle
column illustrates the possible output they could generate in an abstracted way. The buttons
are shown as circles, sensors as boxes and axes are shown as cylinders. The right column of the
illustration shows an example XML configuration file which describes how the values provided by
the controller are abstracted by a mapping on the abstract controller.
The mapping shows the controller specification with it’s <data>-node defining which data can be
accessed externally.
Next three groups of devices are identified with their different attributes. Pairs of deviceIndex
attributes referring to the physical device drivers, and controllerIndex attributes, which indicate
the abstract controller data, implement the mapping between the used library, indicated by the
name of the wrapper in the name attribute of the <device>-node, and the Controller of the
input interface.
Once such a controller is defined it’s data can be accessed via the following functions:

• int getButtonValue(int idx)

With this function call the current value of the button can be requested. On the button
additional callbacks can be registered which are trigged depending on the button state.

• float getAxisValue(int idx)

Returns the value of the axis with the given index. Positive and negative floating point
values are valid.

• SensorData getSensorValue(int idx)

Provides a SensorData object containing transformation data about the sensor with the
given index.

• int getNumberOfButtons()

Returns the amount of registered buttons on the abstract controller.

• int getNumberOfAxes()

Returns the amount of registered axes on the abstract controller.

• int getNumberOfSensors())

Returns the amount of registered sensors on the abstract controller.

4.3 Writing own Devices for the Abstract Controller

Developing a device for inVRs is pretty straightforward. The newly developed device has to inherit
from the class InputDevice and implement the functions for polling the values for the buttons,
axes and sensors. Additionally functions for receiving the available amount of these data types
have to be implemented. As an example we are going to develop a device which uses the VRPN
library.
But first let’s have a look at the base class InputDevice which we have to inherit from. The
following methods have to be implemented when inheriting from the InputDevice:

• int getNumberOfButtons()

This method must return the number of buttons which are provided by this device.

• int getNumberOfAxes()

Must return the amount of available axes provided by the device.

• int getNumberOfSensors()

Must return the amount of available sensors provided by the device.

23

http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classcontroller.html
http://doxygen.invrs.org//classSensorData.html
http://doxygen.invrs.org//classInputDevice.html
http://doxygen.invrs.org//classInputDevice.html
http://doxygen.invrs.org//classInputDevice.html


Chapter 4 - Using the Input Interface 4.3. Writing own Devices for the Abstract Controller

• int getButtonValue(int idx)

Must return the value of the button with the passed index. If the device does not provide a
button with this index it must return 0.

• float getAxisValue(int idx)

Must return the value of the axis with the passed index. If the device does not provide an
axis with this index it must return 0.

• SensorData getSensorValue(int idx)

Must return the value of the sensor (translation and orientation) with the passed index. If
the device does not provide a sensor with this index it must return the predefined value
IdentitySensorData.

• void update()

This method is called by the Controller class once a frame in order to update the values
of the input device. It can be used for example in order to read the input values from the
low level library and copy the values into the member variables of the input device.

Besides the pure virtual methods the InputDevice class provides some methods which can be
called by inherited classes:

• void acquireControllerLock()

Call this method if you want to update button, axis or sensor values inside your input device
from another thread or outside of the update() method. By default the update() method
should be used to update the input values of the device. But for example when using a
callback-based mechanism to gain the input values you have to lock the Controller class to
avoid conflicts with reading and writing the new input values. This can be done by calling
this method.

• void releaseControllerLock()

This method must be called in order to release the controller lock again after the method
acquireControllerLock() was called.

• void sendButtonChangeNotification(int buttonIndex, int newButtonValue)

This method must be called whenever the state of a button has changed. It then forwards the
notification to the Controller class which itself sends notifications to all registered listeners
that the button value has changed.

These are all methods you have to cope with when implementing a new input device for inVRs.
Now let’s take a look at a specific implementation, the VrpnDevice. This class allows to gather
button, analog (axis) and tracker (sensor) data from a VRPN device. It therefore uses the VRPN
callback mechanism and stores these values in internal data structures. These values are then
provided to the inVRs application via the methods inherited from the InputDevice class. The
source code for this device which is described in the following can be found in the inVRs sources
in the subfolder tools/libraries/VrpnDevice.
At first we will have a look at the header file:

#ifndef VRPNDEVICE_H_

#define VRPNDEVICE_H_

#include <vrpn_Button.h>

#include <vrpn_Tracker.h>

#include <vrpn_Analog.h>

#include <set >

#include <inVRs/InputInterface/ControllerManager/InputDevice.h>

24

http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classInputDevice.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classInputDevice.html


Chapter 4 - Using the Input Interface 4.3. Writing own Devices for the Abstract Controller

/* *****************************************************************************

* InputDevice class for reading values from the Vrpn library.

*/

class VrpnDevice : public InputDevice {

public:

/**

* Constructor

*/

VrpnDevice(std:: string deviceId , unsigned numSensors , unsigned numButtons ,

unsigned numAxes);

/**

* Destructor

*/

virtual ~VrpnDevice ();

/**

* Returns the number of buttons provided by the input device

*/

int getNumberOfButtons ();

/**

* Returns the number of axes provided by the input device

*/

int getNumberOfAxes ();

/**

* Returns the number of sensors provided by the input device

*/

int getNumberOfSensors ();

/**

* Returns the value of the button with the passed index

*/

int getButtonValue(int idx);

/**

* Returns the value of the axis with the passed index

*/

float getAxisValue(int idx);

/**

* Returns the value of the sensor with the passed index

*/

SensorData getSensorValue(int idx);

/**

* Updates the values of the VrpnDevice

*/

void update ();

/**

* Returns if the VrpnDevice was successfully initialized

*/

bool isInitialized () const;

/**

* Callback method for the tracker

*/

static void VRPN_CALLBACK trackerPosQuatCallback(void *userdata ,

const vrpn_TRACKERCB trackerData);

/**

* Callback method for the buttons

*/

static void VRPN_CALLBACK buttonCallback(void *userdata , const vrpn_BUTTONCB

25



Chapter 4 - Using the Input Interface 4.3. Writing own Devices for the Abstract Controller

buttonData);

/**

* Callback method for the analog input data

*/

static void VRPN_CALLBACK analogCallback(void *userdata , const vrpn_ANALOGCB

analogData);

private:

/**

* Initializes the device

*/

void initializeDevice(unsigned numSensors , unsigned numButtons , unsigned numAxes)

;

/**

* Update tracker data

*/

void updateTracker(const vrpn_TRACKERCB trackerData);

/**

* Update button data

*/

void updateButton(const vrpn_BUTTONCB buttonData);

/**

* Update analog data

*/

void updateAnalog(const vrpn_ANALOGCB analogData);

std::vector <int > buttonValues;

std::vector <float > axisValues;

std::vector <SensorData > sensorValues;

std::set <int > buttonCallbackWarnings;

std::set <int > axisCallbackWarnings;

std::set <int > sensorCallbackWarnings;

/// defines if

bool initialized;

// ID for the device

std:: string deviceId;

/// member for reading the tracker data

vrpn_Tracker_Remote* tracker;

/// member for reading the button data

vrpn_Button_Remote* button;

/// member for reading the axis data

vrpn_Analog_Remote* analog;

}; // VrpnDevice

/* *****************************************************************************

* Factory class for the VrpnDevice

*/

class VrpnDeviceFactory : public InputDeviceFactory {

public:

/**

* Destructor

*/

virtual ~VrpnDeviceFactory () {}

/**

* Creates a new VrpnDevice if the passed className matches

*/

virtual InputDevice* create(std:: string className , ArgumentVector* args = NULL);

}; // VrpnDeviceFactory

26



Chapter 4 - Using the Input Interface 4.3. Writing own Devices for the Abstract Controller

#endif /* VRPNDEVICE_H_ */

Listing 4.1: VrpnDevice.h

In this file we define two classes, the VrpnDevice class which is inherited from the abstract
InputDevice class and a factory class for this device called VrpnDeviceFactory. The VrpnDevice
class implements all pure virtual functions of the InputInterface class. Additionally the class
provides the isInitialized() method which returns whether the VrpnDevice was initialized
successfully or not. Furthermore the class contains three static methods which are used for VRPN
callbacks in order to update the input values of the device (this methods will be described in detail
later in this section).
Besides the public methods the class also contains 4 private methods, one for initializing the device
and three other methods in order to update the internal variables.
The VrpnDevice class contains the following member variables:

• std::vector<int> buttonValues

In this vector the class stores the values of the buttons provided by this input device.

• std::vector<float> axisValues

In this vector the values of the axes provided by this input device are stored.

• std::vector<SensorData> sensorValues

In this vector the values of the sensors provided by this input device are stored.

• std::set<int> buttonCallbackWarnings
std::set<int> axisCallbackWarnings
std::set<int> sensorCallbackWarnings

These sets are used by the class to avoid printing multiple warnings for individual button-
s/axes/sensors which are updated but not provided by the device. This could be the case
when the VRPN library sends updates for more buttons, axes or sensors than configured in
the VrpnDevice. Since these members are only for debug output we can ignore them here.

• bool initialized

This variable indicates whether the initialization of the InputDevice was successful or not.

• std::string deviceId

In this variable the VRPN device identifier is stored (e.g. trackingDevice@serverHost).

• vrpn_Tracker_Remote* tracker

This variable is used for accessing the tracking data provided by the VRPN device.

• vrpn_Button_Remote* button

This variable is used for accessing the buttons provided by the VRPN device.

• vrpn_Analog_Remote* analog

This variable is used for accessing the analog values (like axes) provided by the VRPN device.

This is all we have to know about the header file. Let’s now have a look at the source file to see
how the implementation looks like.
The first method which is called from the VrpnDevice is the constructor. The parameters needed
for the constructor are the device identifier for the VRPN device and the number of provided
buttons, axes and sensors. The constructor then directly calls the initializeDevice() method
which tries to establish the connection to the VRPN device.

27

http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classInputDevice.html
http://doxygen.invrs.org//classVrpnDeviceFactory.html
http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classInputInterface.html
http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classInputDevice.html
http://doxygen.invrs.org//classVrpnDevice.html


Chapter 4 - Using the Input Interface 4.3. Writing own Devices for the Abstract Controller

VrpnDevice :: VrpnDevice(std:: string deviceId , unsigned numSensors , unsigned

numButtons ,

unsigned numAxes) :

initialized(false),

deviceId(deviceId),

tracker(NULL),

button(NULL),

analog(NULL) {

initializeDevice(numSensors , numButtons , numAxes);

} // VrpnDevice

Listing 4.2: VrpnDevice.cpp - Constructor

In the initializeDevice() method the first thing which happens is to create objects for con-
necting to the tracker, button and analog data provided by the VRPN device with the identifier
stored in the deviceId variable. After the objects are created the vectors for storing the button,
axis and sensor values are initialized.
In the next step the static callback methods for the VRPN objects are registered by calling the
register change handler() methods. This allows the VRPN library to notify the VrpnDevice
whenever a value has changed. The first parameter which is passed to this method is the pointer to
the current class instance. This parameter is later on used in the static callback method to identify
the VrpnDevice object which has registered the callback (in case that multiple VrpnDevices are
used). The second parameter identifies the static callback method which will be called. Finally
the initializeDevice() method checks if any of the VRPN objects could be created and sets the
initialized variable accordingly. This variable can then be read by calling the isInitialized()
method (which is done by the VrpnDeviceFactory later).

void VrpnDevice :: initializeDevice(unsigned numSensors , unsigned numButtons ,

unsigned numAxes) {

tracker = new vrpn_Tracker_Remote(deviceId.c_str());

button = new vrpn_Button_Remote(deviceId.c_str ());

analog = new vrpn_Analog_Remote(deviceId.c_str ());

sensorValues.resize(numSensors);

for (int i=0; i < (int)numSensors; i++) {

sensorValues[i] = IdentitySensorData;

} // for

buttonValues.resize(numButtons);

for (int i=0; i < (int)numButtons; i++) {

buttonValues[i] = 0;

} // for

axisValues.resize(numAxes);

for (int i=0; i < (int)numAxes; i++) {

axisValues[i] = 0;

} // for

if (tracker) {

tracker ->register_change_handler(this , &VrpnDevice :: trackerPosQuatCallback);

} else {

printd(WARNING , "VrpnDevice :: initializeDevice (): unable to open vrpn_Tracker !\n

");

} // else

if (button) {

button ->register_change_handler(this , &VrpnDevice :: buttonCallback);

} else {

printd(WARNING , "VrpnDevice :: initializeDevice (): unable to open vrpn_Button !\n"

);

} // else

28

http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classVrpnDeviceFactory.html


Chapter 4 - Using the Input Interface 4.3. Writing own Devices for the Abstract Controller

if (analog) {

analog ->register_change_handler(this , &VrpnDevice :: analogCallback);

} else {

printd(WARNING , "VrpnDevice :: initializeDevice (): unable to open vrpn_Analog !\n"

);

} // else

if (! analog && !button && !tracker)

initialized = false;

else

initialized = true;

} // initializeDevice

...

bool VrpnDevice :: isInitialized () const {

return initialized;

} // isInitialized

Listing 4.3: VrpnDevice.cpp - initializeDevice()

Now that the device is initialized let’s have a look at the static callback methods. Each callback
method has a similar implementation.
At first the passed userdata argument is casted into a VrpnDevice pointer. This pointer is the
same which was passed as first parameter at callback registration time in the initializeDevice()
method.
Afterwards the update method for the appropriate data type of the obtained device object is
called.

void VRPN_CALLBACK VrpnDevice :: trackerPosQuatCallback(void *userdata ,

const vrpn_TRACKERCB trackerData) {

VrpnDevice* instance = (VrpnDevice *) userdata;

if (instance) {

instance ->updateTracker(trackerData);

} else {

printd(WARNING ,

"VrpnDevice :: trackerPosQuatCallback (): callback for unknown VRPN -device

found!\n");

} // else

} // trackerPosQuatCallback

void VRPN_CALLBACK VrpnDevice :: buttonCallback(void *userdata , const vrpn_BUTTONCB

buttonData) {

VrpnDevice* instance = (VrpnDevice *) userdata;

if (instance) {

instance ->updateButton(buttonData);

} else {

printd(WARNING ,

"VrpnDevice :: buttonCallback (): callback for unknown VRPN -device found!\n");

} // else

} // buttonCallback

void VRPN_CALLBACK VrpnDevice :: analogCallback(void *userdata , const vrpn_ANALOGCB

analogData) {

VrpnDevice* instance = (VrpnDevice *) userdata;

if (instance) {

instance ->updateAnalog(analogData);

} else {

printd(WARNING ,

"VrpnDevice :: analogCallback (): callback for unknown VRPN -device found!\n");

} // else

} // analogCallback

Listing 4.4: VrpnDevice.cpp - static VRPN callback methods

29

http://doxygen.invrs.org//classVrpnDevice.html


Chapter 4 - Using the Input Interface 4.3. Writing own Devices for the Abstract Controller

The implementation of the separate update methods is also quite similar. In each method the
index of the corresponding button, axis or sensor is checked and if the index is in a valid range
the values stored in the according vectors are updated. Note that before and after each update
of these vectors the acquireControllerLock() and releaseControllerLock() methods are
called. This is needed in order to avoid the simultaneous reading and writing of input values (e.g.
from different threads). When updating the input values inside the update() method this lock is
acquired automatically.
Finally the method prints a warning message once in case the obtained index for the button,
axis or sensor is out of the provided range (this is why the ...CallbackWarnings members are
needed).
One difference in the updateButton() method in comparison to the other methods is that the
sendButtonChangeNotification() method is called additionally in case the state of a button has
changed. This call is needed by the abstract inVRs Controller in order to notify all registered
listeners that a button value has changed.

void VrpnDevice :: updateTracker(const vrpn_TRACKERCB trackerData) {

int sensorIndex = trackerData.sensor - 1;

if (sensorIndex < 0)

return;

acquireControllerLock ();

if (sensorIndex < (int)sensorValues.size()) {

sensorValues[sensorIndex ]. position = gmtl::Vec3f(trackerData.pos[0],

trackerData.pos[1],

trackerData.pos [2]);

sensorValues[sensorIndex ]. orientation = gmtl::Quatf(trackerData.quat[0],

trackerData.quat[1],

trackerData.quat[2], trackerData.quat [3]);

} // if

else if (sensorCallbackWarnings.find(sensorIndex) == sensorCallbackWarnings.end()

) {

printd(WARNING ,

"VrpnDevice :: updateTracker (): invalid tracker with index %i found - device

is configured for only %i sensors! Further warnings for this sensor

will be omitted !\n",

sensorIndex , sensorValues.size());

sensorCallbackWarnings.insert(sensorIndex);

} // else

releaseControllerLock ();

} // updateTracker

void VrpnDevice :: updateButton(const vrpn_BUTTONCB buttonData) {

int buttonIndex = buttonData.button;

int buttonValue = buttonData.state ? 1 : 0;

bool change = false;

acquireControllerLock ();

if (buttonIndex < (int)buttonValues.size()) {

if (buttonValues[buttonIndex] != buttonValue) {

buttonValues[buttonIndex] = buttonValue;

change = true;

} // if

} // if

else if (buttonCallbackWarnings.find(buttonIndex) == buttonCallbackWarnings.end()

){

printd(WARNING ,

"VrpnDevice :: updateButton (): invalid button with index %i found - device is

configured for only %i buttons! Further warnings for this button will

be omitted !\n",

buttonIndex , buttonValues.size());

buttonCallbackWarnings.insert(buttonIndex);

} // else

30

http://doxygen.invrs.org//classController.html


Chapter 4 - Using the Input Interface 4.3. Writing own Devices for the Abstract Controller

releaseControllerLock ();

if (change)

sendButtonChangeNotification(buttonIndex , buttonValue);

if (buttonIndex < (int)buttonValues.size()) {

printd(INFO , "VrpnDevice :: updateButton (): updated value of button %i: %i!\n",

buttonIndex ,

buttonData.state);

} // if

} // updateButton

void VrpnDevice :: updateAnalog(const vrpn_ANALOGCB analogData) {

int numAxes = analogData.num_channel;

acquireControllerLock ();

for (int i=0; i < numAxes; i++) {

if (i < (int)axisValues.size()) {

axisValues[i] = analogData.channel[i];

printd(INFO , "\taxis %i: %f\n", i, axisValues[i]);

} // else if

else if (axisCallbackWarnings.find(i) == axisCallbackWarnings.end()){

printd(WARNING ,

"VrpnDevice :: updateAnalog (): invalid axis with index %i found - device is

configured for only %i axes! Further warnings for this axis will be

omitted !\n",

i, axisValues.size());

axisCallbackWarnings.insert(i);

} // else

} // for

releaseControllerLock ();

} // updateAnalog

Listing 4.5: VrpnDevice.cpp - update methods

Now that the callback mechanism is described the only thing which still has to be called is the
mainloop() method of the VRPN objects. These methods are called in the update method of the
VrpnDevice.

void VrpnDevice :: update () {

if (tracker)

tracker ->mainloop ();

if (button)

button ->mainloop ();

if (analog)

analog ->mainloop ();

} // update

Listing 4.6: VrpnDevice.cpp - update()

This is all what is needed in order to get the input values from the VRPN library into the
VrpnDevice class. For publishing these values to the inVRs Controller the virtual methods of
the InputDevice class have to be implemented:

int VrpnDevice :: getNumberOfButtons () {

return buttonValues.size();

} // getNumberOfButtons

int VrpnDevice :: getNumberOfAxes () {

return axisValues.size();

} // getNumberOfAxes

int VrpnDevice :: getNumberOfSensors () {

return sensorValues.size();

31

http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classInputDevice.html


Chapter 4 - Using the Input Interface 4.3. Writing own Devices for the Abstract Controller

} // getNumberOfSensors

int VrpnDevice :: getButtonValue(int idx) {

int result = 0;

if (idx >= 0 && idx < (int)buttonValues.size()) {

result = buttonValues[idx];

} // if

else {

printd(WARNING ,

"VrpnDevice :: getButtonValue (): invalid button index %i passed (device has %

i buttons)!\n",

idx , buttonValues.size());

} // if

return result;

} // getButtonValue

float VrpnDevice :: getAxisValue(int idx) {

float result = 0;

if (idx >= 0 && idx < (int)axisValues.size()) {

result = axisValues[idx];

} // if

else {

printd(WARNING ,

"VrpnDevice :: getAxisValue (): invalid axis index %i passed (device has %i

axes)!\n",

idx , axisValues.size());

} // if

return result;

} // getAxisValue

SensorData VrpnDevice :: getSensorValue(int idx) {

SensorData result = IdentitySensorData;

if (idx >= 0 && idx < (int)sensorValues.size()) {

result = sensorValues[idx];

} // if

else {

printd(WARNING ,

"VrpnDevice :: getSensorValue (): invalid sensor index %i passed (device has %

i sensors)!\n",

idx , sensorValues.size());

} // if

return result;

} // getSensorValue

Listing 4.7: VrpnDevice.cpp - accessor methods for input data

Now with this methods the Controller can access the input data obtained from the VRPN library
and can publish it to the inVRs application.
What still has to be done is the implementation of the VrpnDeviceFactory class. This class is
used during loading of the ControllerManager configuration in order to create a VrpnDevice
instance. The VrpnDeviceFactory must therefore provide a single method create() which takes
two parameters: the first parameter defines the type of the InputDevice which should be created
and the second parameter contains an ArgumentVector which is read from the configuration file.
At first the method checks if the passed className matches to the class the factory can create
(namely VrpnDevice). If not the method must return NULL, so that the ControllerManager
knows that it has to call another factory class. If the class name matches then the method
checks if an ArgumentVector was passed and if this parameter contains the deviceID argument.
This argument is needed in order to find the VRPN device to which the connection should be
established. If this check was successful then the method reads the VRPN device identifier and
the number of buttons, sensors and axes (if defined) from the ArgumentVector. After having
obtainted these values a new VrpnDevice object is created. Finally the method checks if the
device could be initialized successfully and returns the device.

32

http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classVrpnDeviceFactory.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classVrpnDeviceFactory.html
http://doxygen.invrs.org//classInputDevice.html
http://doxygen.invrs.org//classArgumentVector.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classArgumentVector.html
http://doxygen.invrs.org//classArgumentVector.html
http://doxygen.invrs.org//classVrpnDevice.html


Chapter 4 - Using the Input Interface 4.4. Interconnecting own Devices with inVRs

InputDevice* VrpnDeviceFactory :: create(std:: string className , ArgumentVector* args)

{

if (className != "VrpnDevice")

return NULL;

if (!args || !args ->keyExists("deviceID")) {

printd(ERROR ,

"VrpnDeviceFactory :: create (): missing argument entry deviceID! Cannot

create Device !\n");

return NULL;

} // if

std:: string deviceId;

unsigned numSensors = 0;

unsigned numButtons = 0;

unsigned numAxes = 0;

args ->get("deviceID", deviceId);

if (args ->keyExists("numSensors"))

args ->get("numSensors", numSensors);

if (args ->keyExists("numButtons"))

args ->get("numButtons", numButtons);

if (args ->keyExists("numAxes"))

args ->get("numAxes", numAxes);

VrpnDevice* device = new VrpnDevice(deviceId , numSensors , numButtons , numAxes);

// check if device could be initialized and return null if not!

if (!device ->isInitialized ()) {

printd(ERROR ,

"VrpnDeviceFactory :: create (): unable to initialize VRPN device with ID %s\n

",

deviceId.c_str());

delete device;

device = NULL;

} // if

return device;

} // create

Listing 4.8: VrpnDevice.cpp - VrpnDeviceFactory::create()

This is everything which has to be implemented in order to integrate the input data from a VRPN
device into inVRs. In the next section the integration of this device into the tutorial application
is described.

4.4 Interconnecting own Devices with inVRs

There are many ways to provide tracking information to the system. In the last section we have
learned how create our own inVRs devices based on existing libraries like for example VRPN.
In this section we will have a look on how to integrate a self-developed device into an inVRs
application. Therefore the class VrpnDevice which was described in the previous section will be
integrated into the Going Immersive tutorial application. Besides the VrpnDevice inVRs also
provides an implementation for a device using the trackD library, namely the TrackdDevice. In
order to allow users of trackD to also use tracking in this tutorials the snippets in this section are
designed in a way to support both devices.
If you don’t have a tracking system available but want to test this application anyways you can
skip the following steps and continue with the chapter 5. The tutorial application is configured
by default to provide a tracking system emulation device which you can use for simulating the
tracking input then.
But now let’s start with the integration of the tracking devices. In order to be able to use non-
default input devices in an application the ControllerManager must at first be aware of these

33

http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classTrackdDevice.html
http://doxygen.invrs.org//classControllerManager.html


Chapter 4 - Using the Input Interface 4.4. Interconnecting own Devices with inVRs

devices. This is achieved by registering the factories for these devices in the class. Therefore at
first the header files for the input devices we want to add have to be included. The includes for
the VrpnDevice and the TrackdDevice are surrounded by #ifdef statements which are needed
to avoid the use of specific VRPN or trackD datatypes. The checked defines are set by CMake
automatically at configuration time, the detailed functionality will be described at the end of this
section.

#ifdef WITH_VRPN_SUPPORT

#include <inVRs/tools/libraries/VrpnDevice/VrpnDevice.h>

#endif

#ifdef WITH_TRACKD_SUPPORT

#include <inVRs/tools/libraries/TrackdDevice/TrackdDevice.h>

#endif

Listing 4.9: CodeSnippets2.cpp - Snippet-2-1 → GoingImmersive.cpp

After the header files are included the new devices can be registered at the ControllerManager.
This has to be done before the ControllerManager is configured in order to allow to create
instances of the new devices as soon as the configuration file is loaded. Therefore the registration
is implemented in the virtual initInputInterfaceCallback() method which is provided by the
OpenSGApplicationBase. Again the checks for the defines are included to avoid the use of libraries
which are not installed on your system.

void initInputInterfaceCallback(ModuleInterface* moduleInterface) {

#ifdef WITH_VRPN_SUPPORT

if (moduleInterface ->getName () == "ControllerManager") {

ControllerManager* contInt = dynamic_cast <ControllerManager *>( moduleInterface

);

assert(contInt);

contInt ->registerInputDeviceFactory(new VrpnDeviceFactory);

} // if

#endif

#ifdef WITH_TRACKD_SUPPORT

if (moduleInterface ->getName () == "ControllerManager") {

ControllerManager* contInt = dynamic_cast <ControllerManager *>( moduleInterface

);

assert(contInt);

contInt ->registerInputDeviceFactory(new TrackdDeviceFactory);

} // if

#endif

} // initInterfaceCallback

Listing 4.10: CodeSnippets2.cpp - Snippet-2-2 → GoingImmersive.cpp

Now that the factories are registered the ControllerManager is able to create TrackdDevices
and VrpnDevices if configured in the configuration file. Next the configurations for the abstract
inVRs controller has to be created. For the sake of simplicity two configuration files are already
contained in this tutorial, one which uses a single VRPN device and another one for using a single
trackD device for input. In the following the configuration for the VRPN device is presented, the
file for trackD is nearly identical and therefore not described here.
The configuration file VrpnController.xml defines a Controller which consists of a single device
of the type VrpnDevice. The argument deviceID defines the VRPN device identifier which is used
in order to connect to the VRPN library. Additionally this device is configured to provide 3
buttons, 2 axes, and 2 sensors to the controller. Afterwards the mapping of the device buttons,
axes and sensors to the controller values is done. In this case the indices of the VRPN device are
equal to the ones used in the Controller. Since no other input device than the VrpnDevice is
used the controller has the same number of buttons, axes and sensors (it could also have less, if not
all values are mapped from the VrpnDevice to the controller). A more detailed description for the

34

http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classTrackdDevice.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classTrackdDevices.html
http://doxygen.invrs.org//classVrpnDevices.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classVrpnDevice.html


Chapter 4 - Using the Input Interface 4.4. Interconnecting own Devices with inVRs

ControllerManager configuration is given by the Configuring the inVRs framework document.

<?xml version="1.0"?>

<!DOCTYPE controllerManager SYSTEM "http: //dtd.inVRs.org/controllerManager_v1 .0a4.

dtd">

<controllerManager version="1.0a4">

<controller buttons="3" axes="2" sensors="2">

<device type="VrpnDevice">

<arguments >

<arg key="deviceID" type="string" value="tracker@127 .0.0.1"/>

<arg key="numButtons" type="uint" value="3"/>

<arg key="numAxes" type="uint" value="2"/>

<arg key="numSensors" type="uint" value="2"/>

</arguments >

<button deviceIndex="0" controllerIndex="0"/>

<button deviceIndex="1" controllerIndex="1"/>

<button deviceIndex="2" controllerIndex="2"/>

<axis deviceIndex="0" controllerIndex="0">

<axisCorrection scale="1" offset="0"/>

</axis>

<axis deviceIndex="1" controllerIndex="1">

<axisCorrection scale="1" offset="0"/>

</axis>

<sensor deviceIndex="0" controllerIndex="0">

<coordinateSystemCorrection >

<translation x="0" y="0" z="0"/>

<rotation x="1" y="0" z="0" angleDeg="0"/>

<scale x="1" y="1" z="1"/>

</coordinateSystemCorrection >

</sensor >

<sensor deviceIndex="1" controllerIndex="1">

<coordinateSystemCorrection >

<translation x="0" y="0" z="0"/>

<rotation x="1" y="0" z="0" angleDeg="0"/>

<scale x="1" y="1" z="1"/>

</coordinateSystemCorrection >

</sensor >

</device >

</controller >

</controllerManager >

Listing 4.11: VrpnController.xml

In order to use this ControllerManager configuration file instead of the default one we have to
change the entry in the InputInterface configuration file inputinterface.xml with the Snippet
2-1. Take care to remove or comment out the line above the snippet.

<!-- IMPORTANT: replace line above with this snippet! -->

<module name="ControllerManager" configFile="VrpnController.xml"/>

Listing 4.12: XmlSnippets2.xml - Snippet2-1 → inputInterface.xml

Now the ControllerManager tries at startup to load the Controller which is defined in the
VrpnController.xml file.
In order to use the Controller effectively also the Navigation configuration should be changed.
Previously the Navigation was configured to work with a keyboard and a mouse. The new
Controller configuration is now similar to a wand device, which has two axes and three buttons.
Thus we will change the Navigation configuration to work with these input values instead. The
configuration is already provided in the tutorial and can be found in the file wandNavigation.xml.
The configuration file defines three models, the translationModel which describes the linear move-
ment direction, the speedModel which defines the speed of the linear motion and the orientation-
Model which defines the change of orientation. For determining the linear movement direction the

35

http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classInputInterface.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classNavigation.html
http://doxygen.invrs.org//classNavigation.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classNavigation.html


Chapter 4 - Using the Input Interface 4.5. Summary

TranslationViewDirectionModel is used which always returns the view direction of the camera.
For the linear speed calculation the SpeedButtonModel is used which defines two buttons of the
Controller which are used for forward and backward movement. And finally for determination of
the orientation change the OrientationDualAxisModel is used which uses two axes for changing
the rotation along two axes (X and Y) and an additional button for switching to the third rotation
axis (Z).

<?xml version="1.0"?>

<!DOCTYPE navigation SYSTEM "http://dtd.inVRs.org/navigation_v1 .0a4.dtd">

<navigation version="1.0a4">

<translationModel type="TranslationViewDirectionModel"/>

<orientationModel type="OrientationDualAxisModel" angle="10">

<arguments >

<arg key="xAxisIndex" type="int" value="0"/>

<arg key="yAxisIndex" type="int" value="1"/>

<arg key="buttonIndex" type="int" value="2"/>

</arguments >

</orientationModel >

<speedModel type="SpeedButtonModel" speed="5">

<arguments >

<arg key="accelButtonIndex" type="int" value="0"/>

<arg key="decelButtonIndex" type="int" value="1"/>

</arguments >

</speedModel >

</navigation >

Listing 4.13: wandNavigation.xml

In order to use this Navigation model the configuration file has to be exchanged in the file
modules.xml:

<!-- IMPORTANT: replace line above with this snippet! -->

<module name="Navigation" configFile="wandNavigation.xml"/>

Listing 4.14: XmlSnippets2.xml - Snippet2-2 → modules.xml

Before rebuilding and starting the application now you should check if your inVRs installa-
tion and the tutorial was build with VRPN and/or trackD support. For your inVRs installa-
tion you can simply look at the inVRs library directory and search for the according libraries
(e.g. for VRPN libinVRsVrpnDevice.so on Linux, or inVRsVrpnDevice.dll on Windows, or
libinVRsVrpnDevice.dylib on Mac OS X). If the libraries are not available you may have to
rebuild inVRs and activate the VRPN or trackD support in the CMake GUI. The same has to
be done for the CMake configuration of the Going Immersive tutorial. Details on the installation
can be found in the appendix.
When you start the application now you should be able to use the axes and buttons of your VRPN
or trackD device for navigation. The tracking information is not used yet, but will be used in the
following chapters.

4.5 Summary

This chapter has briefly introduced different VR input devices and shown how to interconnect
them with the inVRs framework. An abstract controller which maps the physical devices on ab-
stract inVRs data has been described and the configuration of the controller has been explained
in detail. Often own libraries are used to access input devices. Thus the implementation for a
binding to the abstract controller has been explained. VRPN was used as a demonstrator for this
binding.

36

http://doxygen.invrs.org//classTranslationViewDirectionModel.html
http://doxygen.invrs.org//classSpeedButtonModel.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classOrientationDualAxisModel.html
http://doxygen.invrs.org//classNavigation.html


Chapter 4 - Using the Input Interface 4.5. Summary

The reader should now be able to develop own device bindings to the inVRs framework by imple-
menting a class derived from the InputDevice.

37



Chapter 5

Working with Avatars

In the previous chapter we have seen how to use own devices and incorporate tracking systems in
order to navigate through the environment. The gathered tracking data can be used for example
for interaction purposes.
The physical world position and orientation data gathered by the tracking system is not restricted
to be used only for interaction tasks. It can be incorporated as well for the display of remote
users. We will have a closer look at the user representation. This representation of a user in a VE
is commonly known as an avatar.
In the Medieval Town Tutorial we have only used static avatars represented by a simple model.
These basic avatars are implemented in the class SimpleAvatar. A typical static avatar is described
in inVRs by a configuration file as given below.

<?xml version="1.0"?>

<!DOCTYPE simpleAvatar SYSTEM "http: //dtd.inVRs.org/simpleAvatar_v1 .0a4.dtd">

<simpleAvatar version="1.0a4">

<name value="MedievalCitizen"/>

<representation >

<file type="VRML" name="undead.wrl"/>

<transformation >

<translation x="0" y="0" z="0"/>

<rotation x="0" y="1" z="0" angleDeg="180"/>

<scale x="0.08" y="0.08" z="0.08"/>

</transformation >

</representation >

</simpleAvatar >

Listing 5.1: simpleAvatar.xml

The model which is to be loaded is identified by the <file>-node, while an additional transforma-
tion can be applied by the <transformation>-node.
Other types of avatars are available as well, which can make use of the data gathered by tracking
systems in order to provide a visual approximation of the actual users pose.

5.1 Modelling and Exporting Avatars

In general you need a modeling tool for creating inVRs avatars. Simple avatars as described in the
previous section can be easily exported from any modeling tool, which supports the file formats
readable by inVRs and resprectively the underlying scene graph used.
The advanced Avatara avatars make use of so called mesh skinning. Basically a geometry is
interconnected with a set of axes representing the bones of the avatar. By using these avatars it
is possible to define animation sequences. It gives as well individual access to the head bone, the
spine bone and the hand position and orientation.

38

http://doxygen.invrs.org//classSimpleAvatar.html


Chapter 5 - Working with Avatars 5.2. Using Avatara

The inVRs avatars can be modeled with a variety of modelling tools. Additional scripts and tools
for the Avatara package exist for exporting the avatars into a format usable by inVRs. For a
detailed instruction how to model and export avatars please refer to the Avatara Manual. Three
different modeling tools are currently supported for the export of the avatars. 3D Studio Max 1,
MAYA 2 and Blender 3 export the avatar models including animation phases.

5.2 Using Avatara

The inVRs framework provides an external package called Avatara, which was developed by Hel-
mut and Martin Garstenauer. Avatara is implemented as a scene graph specific tool for OpenSG.
The can be attached as a simple OpenSG node. A detailed description on Avatara avatars is given
in the Avatara Manual.
The avatars of the Avatara package offer basically three different functionalities:

• Starting and stopping of animation phases

• Moving the head bone

• Setting the hand position and orientation

If we take a look at the configuration of the Avatara avatars we can see a significant difference to
our previously used simple avatars.

<?xml version="1.0"?>

<!DOCTYPE simpleAvatar SYSTEM "http: //dtd.inVRs.org/avataraAvatar_v1 .0a4.dtd">

<avataraAvatar version="1.0a4">

<name value="Undead"/>

<representation >

<file type="Avatara MDL" name="undead/undead.mdl"/>

<transformation >

<translation x="0" y="0" z="0"/>

<rotation x="1" y="0" z="0" angleDeg=" -90"/>

<scale x=" -0.08" y=" -0.08" z="0.08"/>

</transformation >

</representation >

<texture file="undead/undeadN.jpg"/>

<animations smooth="true" speed="2" default="standing">

<animation name="standing" file="undead/undead_standing.ani"/>

<animation name="walking" file="undead/undead_walking.ani"/>

</animations >

</avataraAvatar >

Listing 5.2: undead.xml

An additional <animations>-node provides a list of animation sequences which can be played on
demand. It can be defined whether the transition between the sequences is to be smooth which is
achieved by interpolating between the different stages. The speed of the animation sequences can
be set and a default animation sequence can be set.
Additionally the format of the model and the animation sequences to be loaded is proprietary and
can be exported by the described modeling tools.

5.3 Integrating an Avatara Avatar into the tutorial

Usually an avatar is used in an application to represent the user in the virtual world. Therefore
the avatar is displayed at the position the user has currently navigated to. In this tutorial we

1http://www.autodesk.de/adsk/servlet/index?siteID=403786&id=10612077
2http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=7635018
3http://www.blender.org

39

http://www.autodesk.de/adsk/servlet/index?siteID=403786&id=10612077
http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=7635018
http://www.blender.org


Chapter 5 - Working with Avatars 5.3. Integrating an Avatara Avatar into the tutorial

will change this default behaviour a bit. The avatar in this tutorial will be used to display the
transformation of the user as it is determined by the tracking system. This will allow us to
interpret the values provided by the tracking system in a graphical way.
At first the WorldDatabase needs a factory for creating an AvataraAvatar at configuration loading
time. Thus we have to register this factory in our application. The header file containing the
AvataraAvatarFactory has to be included first:

#include <inVRs/tools/libraries/AvataraWrapper/AvataraAvatar.h>

Listing 5.3: CodeSnippets3.cpp - Snippet-3-1 → GoingImmersive.cpp

Next the factory is registered in the WorldDatabase. This is done in the initCoreComponent()
method which is called before the components of the SystemCore are configured. The method
checks for the callback for the UserDatabase initialization. This is done because the avatar
configuration is referenced by the UserDatabase configuration, although the WorldDatabase is
responsible for loading the avatar. When the callback for the UserDatabase initialization is
executed the avatar factory is registered in the WorldDatabase.

void initCoreComponentCallback(CoreComponents comp) {

// register factory for avatara avatars

if (comp == USERDATABASE) {

WorldDatabase :: registerAvatarFactory (new AvataraAvatarFactory ());

} // else if

} // initCoreComponentCallback

Listing 5.4: CodeSnippets3.cpp - Snippet-3-2 → GoingImmersive.cpp

Now that the avatara avatar can be loaded the UserDatabase configuration file must be updated
in order to define the configuration file for the avatar.

<avatar configFile="undead.xml"/>

Listing 5.5: XmlSnippets3.xml - Snippet 3-1 → userDatabase.xml

This is all that has to be done in order to get the avatar into the application. What is still missing
is the update of the avatar’s transformation. Usually this is done by the TransformationManager
when updating the navigated transformation of the user. But in this tutorial the avatar should not
represent the user in the virtual world but visualize the user as recognized by the tracking system.
Thus we have to update the avatar transformation manually in our application. For this we need
at first two variables, one for storing the pointer to the avatar and another one for defining the
initial transformation of the avatar in the scene. This initial transformation represents the center
point of the tracking system (0,0,0) in the virtual world.

AvatarInterface* avatar;

gmtl:: Vec3f COORDINATE_SYSTEM_CENTER;

Listing 5.6: CodeSnippets3.cpp - Snippet-3-3 → GoingImmersive.cpp

In the constructor of the application these two variables are then initialized. The initial transfor-
mation of the avatar is set to the center point of the platform in the middle of the scene.

avatar = NULL;

COORDINATE_SYSTEM_CENTER = gmtl::Vec3f(5, 1, 5);

Listing 5.7: CodeSnippets3.cpp - Snippet-3-4 → GoingImmersive.cpp

40

http://doxygen.invrs.org//classWorldDatabase.html
http://doxygen.invrs.org//classAvataraAvatar.html
http://doxygen.invrs.org//classAvataraAvatarFactory.html
http://doxygen.invrs.org//classWorldDatabase.html
http://doxygen.invrs.org//classSystemCore.html
http://doxygen.invrs.org//classUserDatabase.html
http://doxygen.invrs.org//classUserDatabase.html
http://doxygen.invrs.org//classWorldDatabase.html
http://doxygen.invrs.org//classUserDatabase.html
http://doxygen.invrs.org//classWorldDatabase.html
http://doxygen.invrs.org//classUserDatabase.html
http://doxygen.invrs.org//classTransformationManager.html


Chapter 5 - Working with Avatars 5.4. Testing the avatar without a tracking system

In the initialize() the pointer to the avatar is now obtained from the local User object. The
variable localUser which is used therefore is provided by the OpenSGApplicationBase.

avatar = localUser ->getAvatar ();

if (! avatar) {

printd(ERROR ,

"GoingImmersive :: initialize (): unable to obtain avatar! Check

UserDatabase configuration !\n");

return false;

} // if

Listing 5.8: CodeSnippets3.cpp - Snippet-3-5 → GoingImmersive.cpp

Now that the pointer to the avatar is obtained we can write a method which updates the trans-
formation of the avatar. This method first requests the transformation of the user relative to
the tracking system center. By default a tracking system has at least two sensors, one for the
head transformation of the user and another one for the transformation of the user’s hand (or
input device). This allows for correcting the perspective for this user and enables interaction but
does not provide the correct position of the user (meaning the point where the user’s feet hit the
ground) relative to the tracking system center. To get this position exactly an additional sensor
would be needed at the feet of the user. To avoid this additional sensor inVRs provides a concept
which let’s you calculate the user transformation relative to the tracking system center, called the
UserTransformationModel. Several implementations can exist for this model, by default inVRs
uses the HeadPositionUserTransformationModel. This model takes the position of the sensor
used for head tracking (which has index 0 by default) and removes the height value to approximate
the user position. This transformation is also the one which is requested here in the application.
This transformation is then added to the center transformation of the platform and finally set as
avatar transformation.

void updateAvatar () {

TransformationData trackedUserTrans = localUser ->getTrackedUserTransformation ()

;

trackedUserTrans.position += COORDINATE_SYSTEM_CENTER;

avatar ->setTransformation(trackedUserTrans);

} // updateAvatar

Listing 5.9: CodeSnippets3.cpp - Snippet-3-6 → GoingImmersive.cpp

In order to update this transformation continuously this method has to be called once a frame.
This is achieved by adding a method call into the update() method.

updateAvatar ();

Listing 5.10: CodeSnippets3.cpp - Snippet-3-7 → GoingImmersive.cpp

Now the avatar is fully integrated into our application and is displayed at the transformation
determined by the tracking system. When you start the application now you should see the
movement of the avatar according to your movement tracked by the tracking system.

5.4 Testing the avatar without a tracking system

In case you don’t have a tracking system available you can use an emulator device provided
by inVRs, the GlutSensorEmulatorDevice. This device allows you to simulate the output of a
tracking system with the help of a mouse and a keyboard. By default the GoingImmersive tutorial

41

http://doxygen.invrs.org//classUser.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html
http://doxygen.invrs.org//classUserTransformationModel.html
http://doxygen.invrs.org//classHeadPositionUserTransformationModel.html
http://doxygen.invrs.org//classGlutSensorEmulatorDevice.html


Chapter 5 - Working with Avatars 5.4. Testing the avatar without a tracking system

application is configured to use this device for the abstract inVRs Controller. The device is
configured in the ControllerManager configuration file MouseKeybSensorController.xml:

<?xml version="1.0"?>

<!DOCTYPE controllerManager SYSTEM "http: //dtd.inVRs.org/controllerManager_v1 .0a4.

dtd">

<controllerManager version="1.0a4">

<controller buttons="11" axes="2" sensors="2">

<device type="GlutMouseDevice">

<arguments >

<arg key="axisReleaseSpeed" type="float" value="20"/>

</arguments >

<button deviceIndex="0" controllerIndex="0"/>

<button deviceIndex="1" controllerIndex="1"/>

<button deviceIndex="2" controllerIndex="2"/>

<axis deviceIndex="0" controllerIndex="0">

<axisCorrection scale="1" offset="0"/>

</axis>

<axis deviceIndex="1" controllerIndex="1"/>

</device >

<device type="GlutCharKeyboardDevice">

<button deviceIndex="119" controllerIndex="3" /> <!-- W -->

<button deviceIndex="115" controllerIndex="4" /> <!-- S -->

<button deviceIndex="97" controllerIndex="5" /> <!-- A -->

<button deviceIndex="100" controllerIndex="6" /> <!-- D -->

<button deviceIndex="56" controllerIndex="7" /> <!-- keypad 8 -->

<button deviceIndex="53" controllerIndex="8" /> <!-- keypad 5 -->

<button deviceIndex="52" controllerIndex="9" /> <!-- keypad 4 -->

<button deviceIndex="54" controllerIndex="10"/> <!-- keypad 6 -->

</device >

<device type="GlutSensorEmulatorDevice">

<arguments >

<arg key="numberOfSensors" type="uint" value="2"/>

<arg key="switchSensorButton" type="uint" value="256"/>

<arg key="switchTransformationTargetButton" type="uint" value="257"/>

<arg key="switchAxesButton" type="uint" value="258"/>

</arguments >

<sensor deviceIndex="0" controllerIndex="0">

<coordinateSystemCorrection >

<translation x="0" y="0" z="0"/>

<scale x="100" y="100" z="100"/>

</coordinateSystemCorrection >

</sensor >

<sensor deviceIndex="1" controllerIndex="1">

<coordinateSystemCorrection >

<translation x="0" y="0" z="0"/>

<scale x="100" y="100" z="100"/>

</coordinateSystemCorrection >

</sensor >

</device >

</controller >

</controllerManager >

Listing 5.11: MouseKeybSensorController.xml

In this configuration file the Controller is composed out of three different input devices: the
GlutMouseDevice which is used to get the input from a mouse, the GlutKeyboardDevice which
reads the keyboard keys as buttons and the GlutSensorEmulatorDevice which creates virtual
sensor values with the help of mouse and keyboard.
The first argument for the GlutSensorEmulatorDevice defines the number of emulated sensors
which are provided by this device. In this case 2 sensors are simulated. The next argument defines
which button is used to switch between the sensors. The button values 0-255 are reserved for the
keyboard buttons (ascii values), the buttons 256-258 correspond to the mouse buttons left, middle
and right. The third argument defines which button is used to switch between the translation and

42

http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classGlutMouseDevice.html
http://doxygen.invrs.org//classGlutKeyboardDevice.html
http://doxygen.invrs.org//classGlutSensorEmulatorDevice.html
http://doxygen.invrs.org//classGlutSensorEmulatorDevice.html


Chapter 5 - Working with Avatars 5.5. Summary

rotation of the currently emulated sensor. And the last argument defines which button is used to
switch the Y and the Z axis in the sensor simulation.
In the the two following <sensor> elements the mapping from the sensor index in the device to the
sensor index of the controller is established. In this definition you can see that the sensor values
are scaled by the factor 100 in each axis, just to match to the values expected by the application.
When starting the application you can now switch between the normal navigation and the sensor
emulation mode by pressing the keyboard button 1. When pressing the left mouse button you can
switch between the two sensors you want to manipulate. Pressing the middle mouse button allows
you to switch between the manipulation of the translation and the rotation part of the current
sensor. And pressing the right mouse button allows you to switch between the manipulation along
the Y or Z axis of the current sensor.

5.5 Summary

This chapter has briefly introduced the concepts of avatars in an inVRs virtual world. The use of
the external Avatara avatars has been described in detail. These avatars have been interconnected
and can be used to display animation sequences so far. Now we should be able to display a user
using tracking systems inside an immersive VE.

43



Chapter 6

Coordinate Systems

Coordinate systems play an important role in VEs. They are used to display objects at certain
positions with a given orientation or even more to establish relationships between objects. In
inVRs a set of coordinate systems is used to represent the users’ avatars.
In inVRs the same coordinate system as in OpenGL is used, which is a right handed coordinate
system where the axes point into the following directions:

• X-axis: point to the right

• Y-axis: points to top

• Z-axis: towards the observer out of the screen

6.1 User Coordinates

For interaction, navigation or simply to display an avatar several coordinate systems are necessary
in the inVRs framework. Figure 6.1 illustrates the most important inVRs coordinate systems.

Figure 6.1: Coordinate Systems of the User

As illustrated in Figure 6.1 the following five coordinate systems are required for a correct user
display and will be explained in the subsequent paragraphs:

1. Origin of the VE

2. Navigated transformation

44



Chapter 6 - Coordinate Systems 6.1. User Coordinates

3. User transformation

4. Hand transformation (often identical to the cursor transformation)

5. Head transformation (often identical to the camera transformation)

Navigated Transformation The navigated transformation marked by (2), is the result of
navigation processing provided by the navigation module. This coordinate system of the navigated
transformation is directly related to the origin of the VE. If no additional tracking information is
provided the avatar is placed at the origin of this coordinate system. The navigated transformation
is considered the origin of the tracking system if available.

User Transformation Besides on the navigated position of the user, other coordinate systems
have to be set up to represent the embodiment of the user correctly in the NVE. When a tracking
system is available the tracked position of the user can be added to the navigated position in order
to determine the avatar transformation. By default the tracked position of the user is determined
by taking the position of the head sensor and setting the height-value to 0 to approximate the
position of the user’s feet. If no tracking system is used the head tracking data is set to the identity
matrix.
The user transformation can be obtained on two different ways, either by taking the transformation
relative to the center of the tracking system which is called Tracked User Transformation in inVRs
or relative to the origin of the VE, which is called World User Transformation. The world user
transformation is therefore calculated by:

worldUserTrans = navigatedTrans ∗ trackedUserTrans

Hand Transformation The hand transformation is the value provided by the hand sensor,
which is typically integrated in the wand or attached to a data glove. By default the hand sensor
in inVRs is the one with index 1 in the Controller. It provides information on where the
avatar’s hand should be located and can be used for the correct user representation display if
inverse kinematics is used or for interaction purposes if the user’s cursor is related directly to the
hand.
The hand transformation can be provided either relative to the tracking system center, or relative
to the user transformation or relative to the origin of the virtual world. The transformation
relative to the tracking system center is directly provided by the sensor of the input device. Based
on this the other transformations can be calculated by:

userHandTrans = trackedUserTrans−1 ∗ trackedHandTrans

worldHandTrans = navigatedTrans ∗ trackedHandTrans

Head Transformation The head transformation is provided by the head sensor gathered by the
tracking system. By default the head sensor has the Controller index 0 in an inVRs application.
The head transformation can be used for example to calculate the transformation of the camera.
Like the hand transformation also the head transformation can be retrieved in three ways, either
by directly from the sensor (which is relative to the tracking system center), or relative to the
user transformation or relative to the virtual world center. Based on the first transformation the
others can be calculated by:

userHeadTrans = trackedUserTrans−1 ∗ trackedHeadTrans

worldHeadTrans = navigatedTrans ∗ trackedHeadTrans

45

http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classController.html


Chapter 6 - Coordinate Systems 6.2. Visualizing Transformations

Sensor Transformations Besides the two special sensor transformations for head and hand the
transformations of any number of additional sensors can be used in inVRs. These transformations
can again be obtained directly from the tracking system, relative to the user or relative to the
world:

i...sensorIndex

userSensorTransi = trackedUserTrans−1 ∗ trackedSensorTransi

worldSensorTransi = navigatedTrans ∗ trackedSensorTransi

The special indices 0 and 1 return exactly the head and hand transformations described previously.

Cursor Transformation The cursor transformation is used to define the transformation of the
virtual cursor relative to the origin of the virtual world. Different cursor transformation models
are provided in inVRs for calculating this transformation. The information about the chosen
cursor transformation model is stored in the user database.
The cursor of the user can be represented in many ways which will be explained in future tutorial.

Camera Transformation The transformation of the camera is calculated and constantly up-
dated inside the TransformationManager. By default the camera transformation corresponds to
the navigated transformation of the user.

6.2 Visualizing Transformations

In this section the current tutorial application is extended in order to display the transformations
of the different sensors of the Controller in the virtual world. The transformations are visualized
with the help of multiple entities which have a 3D model in the form of a coordinate system.
One coordinate system entity will be used to visualize the tracked user transformation, the other
entities visualize the tracked sensor transformations of each sensor provided by the Controller.
The first step in achieving this goal is to determine how many coordinate system entities have to
be created in our application. One entity is already contained in the application and is displayed at
the center of the platform. This one is will be used for visualizing the tracked user transformation.
Thus the number of entities which still have to be created corresponds to the number of sensors
provided by the Controller. Therefore at first a variable is defined in which the number of sensors
is stored. The value for this variable is then obtained in the initialize() method.

int numberOfSensors;

Listing 6.1: CodeSnippets4.cpp - Snippet-4-1 → GoingImmersive.cpp

In the initialize() method at first the used controller is requested from the srcclassController-
Manager. From this controller the number of sensors is then stored in the variable.
In the next step a new instance of the coordinate system entity is created for each sensor by calling
the createEntity() method of the WorldDatabase. The first parameter of this method defines
the ID of the EntityType from which an instance should be created. This ID is the one defined
in the EntityType configuration file entities.xml. The second parameter defines the ID of the
Environment in which the new Entity instance should be created. Our tutorial application only
uses a single Environment with ID 1.

ControllerInterface* controller = controllerManager ->getController ();

if (! controller) {

printd(ERROR ,

"GoingImmersive :: initialize (): unable to obtain controller! Check

ControllerManager configuration !\n");

46

http://doxygen.invrs.org//classTransformationManager.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classWorldDatabase.html
http://doxygen.invrs.org//classEntityType.html
http://doxygen.invrs.org//classEntityType.html
http://doxygen.invrs.org//classEnvironment.html
http://doxygen.invrs.org//classEntity.html
http://doxygen.invrs.org//classEnvironment.html


Chapter 6 - Coordinate Systems 6.2. Visualizing Transformations

return false;

} // if

numberOfSensors = controller ->getNumberOfSensors ();

// create an instance of the coordinate system entity (ID=10) for each

// sensor in the environment with ID 1

for (int i=0; i < numberOfSensors; i++) {

WorldDatabase :: createEntity (10, 1);

} // for

Listing 6.2: CodeSnippets4.cpp - Snippet-4-2 → GoingImmersive.cpp

Now that all needed entities are created a method has to be added which updates the transforma-
tion of the coordinate system entities. This method will be called updateCoordinateSystems().
Inside this method at first the pointer to the EntityType which is used for the coordinate systems
is obtained from the WorldDatabase. From this EntityType the list of all instances (coordinate
system entities) is requested. Then the transformation of the first entity is calculated. This trans-
formation represents the tracked user transformation, thus this transformation is requested from
the local User object. To this transformation the position offset of the platform center is added
(which represents to the tracking system center). Finally the Entity transformation is then up-
dated with the calculated one.
After the tracked user transformation the tracked sensor transformations are updated. Therefore
a loop iterates over the number of available sensors. Each single sensor transformation is then
requested from the local User object. You may now wonder why these values are not taken from
the Controller directly. In this application it would not make any change if the transformations
would be obtained from the Controller instead. But using the methods from the User has two big
benefits. The first one is that the transformation was pushed through a transformation pipe from
the TransformationManager. Inside this pipe the sensor transformation could be smoothened or
extrapolated for example, or another example would be to replay a recorded tracking data set
via this pipe. The second benefit is that the tracked sensor transformations are also available for
User objects from remote users, while the Controller only provides the local tracking data. Thus
using the tracking data from the User object is always recommended.
After the tracked sensor transformation was obtained it is again added to the platform center and
written to an coordinate system entity if available (what should be the case since we created them
previously).

void updateCoordinateSystems () {

TransformationData trackedUserTrans , sensorTrans;

// get the list of coordinate system entities (entity type ID = 10)

EntityType* coordinateSystemType = WorldDatabase :: getEntityTypeWithId (10);

const std::vector <Entity*>& entities = coordinateSystemType ->getInstanceList ();

// map the tracked user transformation to the first entity

if (entities.size() > 0) {

trackedUserTrans = localUser ->getTrackedUserTransformation ();

trackedUserTrans.position += COORDINATE_SYSTEM_CENTER;

entities [0]-> setEnvironmentTransformation(trackedUserTrans);

} // if

// map the tracked sensor transformations to the remaining entities

for (int i=0; i < numberOfSensors; i++) {

sensorTrans = localUser ->getTrackedSensorTransformation(i);

sensorTrans.position += COORDINATE_SYSTEM_CENTER;

if (i+1 < entities.size()) {

entities[i+1]-> setEnvironmentTransformation(sensorTrans);

} // if

} // for

} // updateCoordinateSystems

Listing 6.3: CodeSnippets4.cpp - Snippet-4-3 → GoingImmersive.cpp

47

http://doxygen.invrs.org//classEntityType.html
http://doxygen.invrs.org//classWorldDatabase.html
http://doxygen.invrs.org//classEntityType.html
http://doxygen.invrs.org//classUser.html
http://doxygen.invrs.org//classEntity.html
http://doxygen.invrs.org//classUser.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classUser.html
http://doxygen.invrs.org//classTransformationManager.html
http://doxygen.invrs.org//classUser.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classUser.html


Chapter 6 - Coordinate Systems 6.3. Summary

The last thing we still have to do is calling the update method continuously, thus adding the
method call into the update() method.

updateCoordinateSystems ();

Listing 6.4: CodeSnippets4.cpp - Snippet-4-4 → GoingImmersive.cpp

When starting the application now you should be able to see the transformations of all sensors
provided by your configured Controller.

Figure 6.2: The Final Going Immersive Application

6.3 Summary

In this chapter an introduction into the inVRs user coordinates was given. The different coordinate
systems used for the representation of the user as well as interaction purposes have been described.
Additionally the visualisation of these coordinate systems has been performed. The reader should
now be able to interact with VR input devices and multi-display setups. In combination with the
Medieval Town Tutorial full NVEs with articulated avatars can be created.

48

http://doxygen.invrs.org//classController.html


Chapter 7

Outlook

This tutorial has shown how to use the inVRs framework with a variety of input devices an
displays. At first wrapping functionality for faster application development was introduced. Basic
setup as described in the Medieval Town Tutorial was hidden inside a so called application base.
The use as well as the configuration of the CAVE Scene Manager was explained to ease the access
to the OpenSG multi-display functionality. Afterwards the interconnection with arbitrary input
devices was illustrated. It was shown how to connect your own input devices with inVRs. As an
example an interconnection to VRPN as a rather generic input library was developed. In order to
display remote users correctly the concept of articulated avatars was introduced. These avatars
provided by the external Avatara package make use of tracking data to display head orientation
and hand position and orientation correctly. When displaying a user in an NVE many different
coordinate systems have to be configured which was shown in the end of the document.
The reader of this tutorial should now be able to interconnect arbitrary multi-display systems and
input devices in order to create fully immersive NVEs. Interaction and navigation can be used as
known from a previous tutorial. The introduced avatars can of course be integrated as well into
simple desktop applications. By simply changing the setup of the CAVE Scene Manager setup
and altering the used controller it is now easily possible to switch from desktop application with
a mouse keyboard controll to installations likes CAVEs without altering a single line of code or
recompiling.
All available OpenSG specific tools can be used in conjunction with the CAVE Scene Manager in
order to provide stereoscopic output. When writing own OpenSG code an using the multi-display
functionality one has to be very careful with node locking as in general with OpenSG multi-display
applications. If the locking is not performed correctly the application might run on stable a single
display system and might crash afterwards when multi-display output is configured.

7.1 Funky Physics

In order to generate really vivid and lifelike VEs often physics simulation is incorporated. The
next tutorial will give an insight on how physics simulation can be done in inVRs.
This tutorial focuses on the inVRs physics module which is based on the Object Oriented Physics
Simulation (OOPS) developed by Roland Landertshamer as an implementation basis for his MSc
Thesis [Lan09]. The basics of rigid body dynamics will be introduced and the configuration of
physically simulated entities will be explained in depth in the usual hands-on way.

7.2 Acknowledgments

The authors of the framework would like to thank the contributors of the core code, the tools as
well as people who helped administrating the project for their selfless efforts and achievements.
We would also like to thank all the users supporting us and evaluating the framework.

49



Chapter 7 - Outlook 7.2. Acknowledgments

Considering the tools introduced in this tutorial special thanks go to their developers Adrian
Haffegee, Helmut Garstenauer and Martin Garstenauer. Thanks so much.

50



Bibliography

[Abe04] Oliver Abert. OpenSG Tutorial, 2004.

[AV06] Christoph Anthes and Jens Volkert. invrs - a framework for building interactive
networked virtual reality systems. In Michael Gerndt and Dieter Kranzlmüller, edi-
tors, International Conference on High Performance Computing and Communications
(HPCC ’06), volume 4208 of Lecture Notes in Computer Science (LNCS), pages 894–
904, Munich, Germany, September 2006. Springer.

[CNSD+92] Carolina Cruz-Neira, Daniel J. Sandin, Thomas A. Defanti, Robert V. Kenyon, and
John C. Hart. The cave: Audio visual experience automatic virtual environment.
Communications of the ACM, 35(6):64–72, June 1992.

[CPS+97] Marek Czernuszenko, Dave Pape, Daniel J. Sandin, Thomas A. DeFanti, Gregory L.
Dawe, and Maxine D. Brown. The immersadesk and infinity wall projection-based
virtual reality displays. Computer Graphics, 31(2):46–49, May 1997.

[Haf04] Adrian Haffegee. Development of a scalable network topology supporting close-
coupled collaboration. Master’s thesis, University of Reading, UK, Reading, UK,
2004.

[HJAA05] Adrian Haffegee, Ronan Jamieson, Christoph Anthes, and Vassil N. Alexandrov. Tools
for collaborative vr application development. In Vaidy S. Sunderam, Geert Dick van
Albada, Peter M. A. Sloot, and Jack J. Dongarra, editors, International Conference
on Computational Science (ICCS ’05), volume 3516 of Lecture Notes in Computer
Science (LNCS), pages 350–358, Atlanta, GA, USA, May 2005. Springer.

[KF94] Wolfgang Krueger and Bernd Fröhlich. The responsive workbench. IEEE Computer
Graphics and Applications, 14(3):12–15, 1994.

[Lan09] Roland Landertshamer. Physics simulation in networked virtual environments. Mas-
ter’s thesis, Institut für Graphische und Parallele Datenverarbeitung, Johannes Kepler
University Linz, Linz, Austria, August 2009.

[Rei02] Dirk Reiners. OpenSG: A Scene Graph System for Flexible and Efficient Realtime
Rendering for Virtual and Augmented Reality Applications. PhD thesis, Technische
Universität Darmstadt, Mai 2002.

[RS01] Gerhard Reitmayr and Dieter Schmalstieg. An open software architecture for virtual
reality interaction. In ACM Symposium on Virtual Reality Software and Technology
(VRST ’01), pages 47–54, Alberta, Canada, November 2001. ACM Press.

[RS05] Gerhard Reitmayr and Dieter Schmalstieg. Opentracker: A flexible software design
for three-dimensional interaction. Virtual Reality, 9(1):79–92, December 2005.

[Sut68] Ivan E. Sutherland. A head-mounted three-dimensional display. In Fall Joint Com-
puter Conference AFIPS Conference, pages 757–764, Fall 1968.

51



Bibliography

[THS+01] Russell M. Taylor II, Thomas C. Hudson, Adam Seeger, Hans Weber, Jeffrey Juliano,
and Aron T. Helser. Vrpn: A device-independent, network-transparent vr peripheral
system. In ACM Symposium on Virtual Reality Software and Technology (VRST ’01),
pages 55–61, Alberta, Canada, November 2001. ACM Press.

52



List of Figures

1.1 The Going Immersive Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 A CAVE and an HMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 A Curved Screen and a Powerwall . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Render server window (front) and control window (inVRs) . . . . . . . . . . . . . . 19

4.1 Some Typical VR Input devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 An Example Mapping of the Input Interface . . . . . . . . . . . . . . . . . . . . . . 22

6.1 Coordinate Systems of the User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 The Final Going Immersive Application . . . . . . . . . . . . . . . . . . . . . . . . 48

7.1 Open CMake and set GoingImmersive paths . . . . . . . . . . . . . . . . . . . . . . 56
7.2 Open CMake and set GoingImmersive paths . . . . . . . . . . . . . . . . . . . . . . 56
7.3 CMake failure when a path could not be found . . . . . . . . . . . . . . . . . . . . 57
7.4 Reason for CMake failure in log output . . . . . . . . . . . . . . . . . . . . . . . . 57
7.5 Enter missing path and continue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.6 Activate VRPN-support for tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . 58

53



Listings

2.1 GoingImmersive.cpp - Top Part of application . . . . . . . . . . . . . . . . . . . . . 9
2.2 GoingImmersive.cpp - Top Part of class . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 GoingImmersive.cpp - Destructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 GoingImmersive.cpp - getConfigFile() . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 GoingImmersive.cpp - initialize() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 GoingImmersive.cpp - display() and cleanup() . . . . . . . . . . . . . . . . . . . . . 11
2.7 GoingImmersive.cpp - main method . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 GoingImmersive.cpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 XmlSnippets1.xml - Snippet1-1 → general.xml . . . . . . . . . . . . . . . . . . . . 18
3.3 XmlSnippets1.xml - Snippet1-2 → general.xml . . . . . . . . . . . . . . . . . . . . 18
3.4 XmlSnippets1.xml - Snippet1-3 → general.xml . . . . . . . . . . . . . . . . . . . . 18
3.5 CodeSnippets1.cpp - Snippet-1-1 → GoingImmersive.cpp . . . . . . . . . . . . . . . 19
4.1 VrpnDevice.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 VrpnDevice.cpp - Constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 VrpnDevice.cpp - initializeDevice() . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 VrpnDevice.cpp - static VRPN callback methods . . . . . . . . . . . . . . . . . . . 29
4.5 VrpnDevice.cpp - update methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.6 VrpnDevice.cpp - update() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.7 VrpnDevice.cpp - accessor methods for input data . . . . . . . . . . . . . . . . . . 31
4.8 VrpnDevice.cpp - VrpnDeviceFactory::create() . . . . . . . . . . . . . . . . . . . . . 33
4.9 CodeSnippets2.cpp - Snippet-2-1 → GoingImmersive.cpp . . . . . . . . . . . . . . . 34
4.10 CodeSnippets2.cpp - Snippet-2-2 → GoingImmersive.cpp . . . . . . . . . . . . . . . 34
4.11 VrpnController.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.12 XmlSnippets2.xml - Snippet2-1 → inputInterface.xml . . . . . . . . . . . . . . . . 35
4.13 wandNavigation.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.14 XmlSnippets2.xml - Snippet2-2 → modules.xml . . . . . . . . . . . . . . . . . . . . 36
5.1 simpleAvatar.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 undead.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 CodeSnippets3.cpp - Snippet-3-1 → GoingImmersive.cpp . . . . . . . . . . . . . . . 40
5.4 CodeSnippets3.cpp - Snippet-3-2 → GoingImmersive.cpp . . . . . . . . . . . . . . . 40
5.5 XmlSnippets3.xml - Snippet 3-1 → userDatabase.xml . . . . . . . . . . . . . . . . 40
5.6 CodeSnippets3.cpp - Snippet-3-3 → GoingImmersive.cpp . . . . . . . . . . . . . . . 40
5.7 CodeSnippets3.cpp - Snippet-3-4 → GoingImmersive.cpp . . . . . . . . . . . . . . . 40
5.8 CodeSnippets3.cpp - Snippet-3-5 → GoingImmersive.cpp . . . . . . . . . . . . . . . 41
5.9 CodeSnippets3.cpp - Snippet-3-6 → GoingImmersive.cpp . . . . . . . . . . . . . . . 41
5.10 CodeSnippets3.cpp - Snippet-3-7 → GoingImmersive.cpp . . . . . . . . . . . . . . . 41
5.11 MouseKeybSensorController.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.1 CodeSnippets4.cpp - Snippet-4-1 → GoingImmersive.cpp . . . . . . . . . . . . . . . 46
6.2 CodeSnippets4.cpp - Snippet-4-2 → GoingImmersive.cpp . . . . . . . . . . . . . . . 46
6.3 CodeSnippets4.cpp - Snippet-4-3 → GoingImmersive.cpp . . . . . . . . . . . . . . . 47
6.4 CodeSnippets4.cpp - Snippet-4-4 → GoingImmersive.cpp . . . . . . . . . . . . . . . 48
7.1 general.xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

54



Appendix

Used Models

Author: TiZeta
Model: Low Poly Undead Male Model
Avatar: http://e2-productions.com/

Installation Instructions

Prerequisites

To be able to build the tutorial application the following packages have to be installed:

1. inVRs: version 1.0alpha5 or above

2. CMake: version 2.6.x

55

http://e2-productions.com/


Listings

Step 1: Creating Build Structure with CMake GUI

Before the tutorial application can be built the build files for your target system have to be created
with the help of CMake. In this step we assume that you have graphical client for running CMake.
If this is not the case and you have to run CMake from command line please follow the instructions
in section Step 1 (Alternative): Using CMake from Command Line.
At first you have to open CMake and set the location of the tutorial sources and the directory
where the build files should be stored. Afterwards press the Configure button:

Figure 7.1: Open CMake and set GoingImmersive paths

Next you have to choose the target build structure. On Linux or Mac OS X systems for example
you may want to select Unix Makefiles here, on Windows you should select your Microsoft Visual
Studio version. Of course you can also select other target build structures, like CodeBlocks or
Xcode. Next press the Finish button:

Figure 7.2: Open CMake and set GoingImmersive paths

56



Listings

Now CMake tries to find the paths to all libraries and include files needed by the tutorial appli-
cation. Depending on your installation CMake may fail in this step, which results in a picture
similar to the following:

Figure 7.3: CMake failure when a path could not be found

Now after you pressed OK here you should be able to see the reason for the failure by reading
the log output in the textfield at the bottom of the window. In this case the path to the inVRs
installation was not found.

Figure 7.4: Reason for CMake failure in log output

Therefore you have to set the inVRs ROOT DIR variable to the folder of your inVRs installation
and press Configure again.
Proceed the same way with other paths which can not be found until the configuration step finishes
successfully.
In the next step you should choose whether you want to add a support for the VRPN and/or
TrackD tracking library to your build system. Activating this support requires that also your

57



Listings

Figure 7.5: Enter missing path and continue

inVRs installation was built with the same libraries enabled and the according libraries must be
installed on your system. If you want to run this tutorial without a tracking system you can
ignore this step. In the following picture the support for VRPN will be activated and confirmed
by pressing the Configure button again:

Figure 7.6: Activate VRPN-support for tutorial

Finally after the configuration was finished you can press the Generate button in order to generate
the build files for your target system. These build files can then be found in the target directory
you entered at the beginning (by default the build subdirectory of the tutorial).

Step 1 (Alternative): Using CMake from Command Line

In case you don’t have a CMake GUI available you can also run CMake from command line. Since
this will be mainly the case on Linux installations the following instructions are focused on this

58



Listings

operating system.
Before running CMake you should at first configure the paths and build options in the file user.
cmake. For example in order to define the path of your inVRs installation you can uncomment
the following entry:

# DEFINES INVRS DIRECTORY
# By uncommenting the following line you can specify the path where your INVRS
# installation is located.
# If this entry is not set cmake tries to find the path by itself.
set (inVRs_ROOT_DIR /opt/inVRs_v1.0a5/)

After you finished the configuration enter the path where you want your build files to be created,
the recommended path is the build subdirectory, and call the cmake command:

# from GoingImmersive source directory
cd build
cmake ../

This should create the Makefiles in the build directory.

Step 2: Building the Tutorial

After the first step was finished the tutorial can be built. Therefore use your default IDE or build
program. The build files can be found in the selected build target folder, which is the build
subdirectory by default. For example when building on Linux just enter the build directory and
call make:

# from GoingImmersive source directory
cd build
make

Starting the Application

Before the application can be started the path to the inVRs libraries has to be configured. This has
to be done in the file general.xml which can be found in the subfolders config and final/config.
Inside these folder you have to enter the path to your inVRs library directory in the following
line:

<path name="Plugins" directory="/please/insert/your/inVRs/libs/path/here/"/>

Listing 7.1: general.xml

For starting the built application two script files are available, the startTutorial.sh (or startTutorial.
bat file which starts the tutorial built from the src directory and the startFinalTutorial.sh
(or startFinalTutorial.bat which starts the final version of the tutorial which is contained in
the folder final. Before executing these scripts you will have to open them and set the paths to
the inVRs and OpenSG libraries accordingly, like:

# set opensg library path
export OPENSG_LIB_PATH=/usr/local/lib/opt
# set inVRs library path
export INVRS_LIB_PATH=/opt/inVRs_v1.0a5/lib

59


	Abstract
	Contents
	Introduction
	Tutorial Overview
	Outline

	Wrapping Functionality
	Using the ApplicationBase
	Using the OpenSGApplicationBase
	Initial Tutorial Application
	Summary

	Immersive Displays
	Different Types of Immersive Displays
	Using the CAVE Scene Manager
	Configuring the CAVE Scene Manager
	Displaying Virtual Environments
	Summary

	Using the Input Interface
	Different Types of Input Devices
	Mapping Input on the Abstract Controller
	Writing own Devices for the Abstract Controller
	Interconnecting own Devices with inVRs
	Summary

	Working with Avatars
	Modelling and Exporting Avatars
	Using Avatara
	Integrating an Avatara Avatar into the tutorial
	Testing the avatar without a tracking system
	Summary

	Coordinate Systems
	User Coordinates
	Visualizing Transformations
	Summary

	Outlook
	Funky Physics
	Acknowledgments

	Bibliography
	List of Figures
	Listings
	Appendix

