
–

Developing VR Applications With The inVRs Framework

–

Tutorial Notes

–

IEEE Virtual Reality 2010

Christoph Anthes, Roland Landertshamer,
and Marina Lenger

March 12, 2010

Abstract

The inVRs framework was created to ease the design and the development of Networked Virtual
Environments. This document provides a brief introduction on the concepts used by inVRs. It
demonstrates how to develop the first application using basic navigation, interaction and network
communication with a hands-on example.
After going through the tutorial, the user will be able to navigate through the virtual world, pick
up objects and place them. By pressing a button an animation sequence can be started.
Typically VR applications make use of stereoscopic multi-display installations and tracking sys-
tems as well as a variety of exotic input devices. The second half of this document provides a
brief introduction on how to use inVRs with multi-display installations and a variety of tracking
systems. It demonstrates how to develop a simple object viewer using basic navigation, interaction
on typical Virtual Reality installations with a hands-on example.
After going through the tutorial, the user will be able to navigate through a scene which is if
available displayed on VR hardware. Tracking systems will allow the user to display the pose of
it’s avatar approximately correct according to a head sensor and a sensor attached to an input
device.

1

Contents

Abstract 1

Contents 1

1 Introduction 1
1.1 Tutorial Overview . 2
1.2 Outline . 3

2 Architecture Overview 6
2.1 System Core . 6

2.1.1 Databases . 7
2.1.2 Communication . 7

2.2 Interfaces . 8
2.2.1 Input Interface . 8
2.2.2 Output Interface . 8

2.3 Modules . 8
2.3.1 Navigation . 9
2.3.2 Interaction . 9
2.3.3 Network . 9

3 Basic Application Development 10
3.1 Using OpenSG and GLUT . 11
3.2 Configuring inVRs . 11
3.3 Working with the WorldDatabase . 15
3.4 Summary . 18

4 Navigation and Skybox 20
4.1 Adding inVRs Components . 20
4.2 Navigation . 22

4.2.1 Managing User Input . 25
4.3 Skybox . 26
4.4 Summary . 28

5 Transformation Management 29
5.1 Height and Collision Maps . 29

5.1.1 Generating Collision Maps . 30
5.1.2 Generating Height Maps . 31

5.2 Using Modifiers and Pipes . 31
5.3 Summary . 34

2

Contents

6 Interaction 35
6.1 State Machine . 35
6.2 Implementing Interaction . 37
6.3 Events . 40
6.4 Summary . 40

7 Using Network Communication 41
7.1 Concepts . 41
7.2 Setting up the Network Communication . 41
7.3 Transmitting Data . 42
7.4 Displaying Avatars . 43
7.5 Execution . 44
7.6 Summary . 44

8 Developing own Application Logic 46
8.1 Input and Animations . 46
8.2 Summary . 48

9 Wrapping Functionality 49
9.1 Using the ApplicationBase . 49
9.2 Using the OpenSGApplicationBase . 51
9.3 Initial Tutorial Application . 54
9.4 Summary . 57

10 Immersive Displays 58
10.1 Different Types of Immersive Displays . 58
10.2 Using the CAVE Scene Manager . 59
10.3 Configuring the CAVE Scene Manager . 60
10.4 Displaying Virtual Environments . 62
10.5 Summary . 65

11 Using the Input Interface 66
11.1 Different Types of Input Devices . 66
11.2 Mapping Input on the Abstract Controller . 67
11.3 Writing own Devices for the Abstract Controller 68
11.4 Interconnecting own Devices with inVRs . 78
11.5 Summary . 81

12 Working with Avatars 83
12.1 Modelling and Exporting Avatars . 83
12.2 Using Avatara . 84
12.3 Integrating an Avatara Avatar into the tutorial . 84
12.4 Testing the avatar without a tracking system . 86
12.5 Summary . 88

13 Coordinate Systems 89
13.1 User Coordinates . 89
13.2 Visualizing Transformations . 91
13.3 Summary . 93

14 Outlook 94
14.1 Tools . 95
14.2 Funky Physics . 95
14.3 Documentation . 95
14.4 Acknowledgments . 95

3

Contents Contents

Bibliography 96

List of Figures 99

Listings 101

Appendix 104

4

Chapter 1

Introduction

Networked Virtual Environments (NVEs) are getting more and more attention from the industry
and research facilities. A vast amount of application areas ranging from psychology, architecture,
training, scientific visualization over to art and entertainment are using Virtual Reality (VR) tech-
nology.
But it is still challenging to develop such applications since many aspects from a variety of research
areas have to be taken into account. Software design, hardware development and human factors
are to be considered for the creation of efficient NVEs.
Most VR applications still follow a low-level approach, where the NVE is tailored specific to the
application domain.
The use of scene graphs in combination with a complete application development is still cumber-
some since often the mechanisms for interaction, navigation and synchronization are reinvented.
On the other hand VR applications can be created using existing NVEs, relying on scripting
languages or authoring environments where graphical editors ease the design and development
process. One of the major drawbacks of these solutions is their restrictiveness.
To overcome these mentioned issues and to ease the design and development process of NVEs the
inVRs framework was developed. inVRs provides a structured approach using well-known soft-
ware patterns. It is designed to formalize and reuse common interaction techniques and navigation
methodologies, with the feature of automatic network distribution, by keeping up the needed flex-
ibility of the low-level solutions.
Additional tools have been created for inVRs like the support of physics engines, a graphical editor
for the layout of a VE, and a 3D widget system inside virtual worlds. Through the approach chosen
for the internal communication and the network module the out-of-the-box feature of concurrent
object manipulation is supported.
The inVRs framework is publicly available under an LGPL license at http://www.invrs.org/. It
has been developed from 2005 till 2009. A large number of researchers and computer science stu-
dents contributed to the code base of the framework and have created over 10 applications from
the domains of new media art, architecture, entertainment, safety training, product presentation,
and scientific visualization.
Currently inVRs supports OpenSG1 as a scene graph, OpenAL2 for the audio layer and ODE
(Open Dynamics Engine)3 for physics simulation. The inVRs framework [AV06] was designed to
ease the creation of Networked Virtual Environments (NVEs). Considering the concept of NVEs
not only desktop environments, but rather truly interconnected Virtual Reality (VR) applications
are falling in this category. This class of applications makes use of stereoscopic displays, which
are often implemented as multi-display installations. These displays are normally equipped with
3D tracking systems to allow for intuitive user interaction.
Many libraries for accessing tracking systems and even more types of such systems exist. The

1http://www.opensg.org/
2http://www.openal.org/
3http://www.ode.org/

1

http://www.opensg.org/
http://www.openal.org/
http://www.ode.org/

Chapter 1 - Introduction 1.1. Tutorial Overview

input used in a VR application is often not solely provided by position tracking, all types of arbi-
trary devices can be used to generate input to VR applications.
In order to represent the user in an NVE often 3D models, or so called avatars, are integrated in
the scene to display remote users. Depending on the amount of given sensors they can be animated
in a fairly realistic manner.
The tutorial consists of three consecutive parts, where the first part introduces the basic concepts
of the framework. In the second part which is available independently as the Medieval Town Tu-
torial the users will learn how to create basic inVRs applications. With the basic knowledge of
the inVRs framework the readers will now be able to extend their knowledge into the immersive
sector in the part available independently as well as the Going Immersive Tutorial.
Many aspects of the Medieval Town part of the tutorial will be simplified and abstracted and
additional aspects like input devices, displays and coordinate system will be explained in depth.

1.1 Tutorial Overview

The presented tutorial illustrates a set of key concepts of the inVRs framework and demonstrates
easy and consistent application development. The focus is set on fast application prototyping
by using the already existing modules and the system core. Writing individual components or
enhancing already available components requires a deeper insight in the framework and is therefore
consequentially left out in the first part of the tutorial.
Initially the reader will learn how to wrap up the cumbersome configuration setup which was
explained in detail in the first part of the tutorial in order to get an insight in the frameworks
inner workings. The tutorial will provide a brief introduction into the basics of immersive displays
as well as 3D tracking systems and common VR input devices. It will be described how to configure
the displays and how to write own input device drivers, by using existing drivers and libraries. The
different coordinate systems will be used in conjunction with the user representations to display
remote users.
During the different stages of the course XML configuration data has to be altered and own C++
code has to be developed. The tutorial is organized into the following constitutive sections:

• Architecture Overview

• Basic Application Development

• Navigation and Skybox

• Transformation Management

• Interaction

• Using Network Communication

• Developing own Application Logic

• Wrapping Functionality

• Immersive Displays

• Using the Input Interface

• Coordinate Systems

• Tracking and Avatars

In the architecture chapter an overview on the provided concepts is presented and the termi-
nology which is used in the framework is introduced. The following six chapters of the tutorial
demonstrate to the participants how an interactive NVE can be configured and created using the

2

Chapter 1 - Introduction 1.2. Outline

inVRs framework. Finally own application logic is integrated which illustrates the flexibility of
the provided software.
After finishing the tutorial one should be able to navigate, with terrain following and collision
detection through a shared virtual world representing a medieval town. Objects can be moved in
this town and animations like starting the rotation of a windmill sail can be triggered.
At the end of the tutorial the readers should be able to develop their own interactive multi-user
applications for CAVEs [CNSD+92], Head-Mounted Displays (HMDs) [Sut68], curved displays
and similar devices. Position tracking systems can be used for interaction and are incorporated to
display remote users. An abstract virtual world will be displayed and acts as a proxy for arbitrary
VEs.

Figure 1.1: The Tutorial Town

Figure 1.1 shows the tutorial application with environments, a skybox and some houses and boxes.
Collision with the surroundings is detected and interaction with these boxes is possible.

Figure 1.2: The Going Immersive Application

Figure 1.2 illustrates the resulting application form the completed Going Immersive Tutorial. The
left side of the figure gives an overview on the scene, while the right side of the figure shows the
coordinate systems of the avatar.

1.2 Outline

The chapters of this tutorial cover the following topics:

• Chapter 2 - Architecture Overview
The architecture of the framework is presented. The inVRs specific terminology, the individ-

3

Chapter 1 - Introduction 1.2. Outline

ual components like the core, the modules, and the interfaces as well as their interconnections
are briefly introduced.

• Chapter 3 - Basic Application Development
A very simple OpenSG application with an empty scene graph is described. To include
inVRs functionality the configuration of the framework is presented and the world database
is connected to the OpenSG example. Placing entities inside an environment coordinate
system in the VE creates a basic scene, displaying a medieval town square. Configurations
of the world database are altered in order to arrange the scene.

• Chapter 4 - Navigation and Skybox
A flying navigation is established in order to observe the scene. The models for speed,
direction and orientation of the navigation module are configured. Internally they are inter-
connected with the keyboard and mouse input, which is abstracted by the input interface.
Basic OpenSG navigation has to be decoupled from the VE. To create the illusion of a large
world additionally a skybox illustrating the surroundings of the world is set up.
Users are now able to move the camera and their user representations, the avatars, through-
out the VE. The navigation module has to be integrated in the application and interconnected
to the inVRs system core.

• Chapter 5 - Transformation Management
The transformation management is used in order to create terrain following and collision
detection with the environment and its entities.
The configuration of the transformation pipe is performed by integrating height map and col-
lision map modifiers. These modifiers alter the transformations received from the navigation
module. The resulting transformations are applied on the users camera and avatar.

• Chapter 6 - Interaction
Entities in the environment can be picked and placed by using a modified HOMER (Hand-
centered Object Manipulation Extending Ray-casting) [BH97] interaction technique. The
mouse or the touchpad is used as a conventional input device in order to select and manip-
ulate objects in the VE.
To create this type of interaction the transition functions of the interaction modules’ state
machine have to be configured and the module has to be interconnected with the system
core.

• Chapter 7 - Using Network Communication
In order to develop an NVE the network module of the framework is integrated. By con-
necting the network module to the core and distributing the events and transformation data
the participants of the tutorial are now able to interact in a shared VE. Remote interaction
can be perceived.
To enable the distribution of transformations the transformation pipes have to be altered
again.

• Chapter 8 - Developing own Application Logic
To demonstrate the flexibility of the framework and the possibility of low-level development
simple application logic is created in C++ to implement animations inside the virtual world.
With simple actions and few transformation calculations the rotation of a windmill wheel
can be triggered and terminated.

• Chapter 9 - Wrapping Functionality
The cumbersome setup of an inVRs application as seen in the first tutorial is replaced by
using a wrapper class. This application base is introduced and explained in this chapter. The
generic abstract class application base is used as a super class for the actual implementation
for OpenSG scene graphs.

4

Chapter 1 - Introduction 1.2. Outline

• Chapter 10 - Immersive Displays
A variety of immersive displays is introduced as is the setup of the framework in order
to demonstrate the configuration of these displays. The inVRs framework uses the CAVE
Scene Manager in connection with OpenSG in order to generate graphics output on arbitrary
rectangular display panes. It is explained how to configure your VR display and how to
interconnect it to the inVRs framework.

• Chapter 11 - Using the Input Interface
These previously mentioned displays often come with a variety of specific input devices. The
reader will learn how to interconnect already available or own devices to inVRs, by writing
specific drivers for the input interface.

• Chapter 12 - Working with Avatars
To display remote users avatars can be used and the data gathered from the tracking systems
can be mapped on these avatars. Different types of avatars exist. A more advanced avatar
will be introduced as the one experienced in the first tutorial.

• Chapter 13 - Coordinate Systems
Coordinate systems are a key aspect for displaying avatars, and implementing interaction
when tracking systems are used. The dependencies of the different world and user coordinate
systems will be explained in depth.

• Chapter 14 - Outlook
The taught aspects of inVRs are recaptured and a brief outlook on what else could be
explored using the framework is given. The additional tools as well as the available docu-
mentation are briefly introduced.

5

Chapter 2

Architecture Overview

inVRs consists of input and output interfaces for the interconnection to different scene graphs
and the access of a variety of input devices. Three independent modules support interaction,
navigation and network communication. The modules and the interfaces are connected to a
system core, which manages communication between the components using discrete events and
continuous flows of transformation data packets. Inside the system core a data storage system
keeps the logical entities of the NVE as well as data about the users interconnected with each
other.

Figure 2.1: The Basic inVRs Components

In general three main types of components exist. Figure 2.1 illustrates the main components of
the inVRs framework. The interfaces for input and output are shown in grey, the modules are
drawn in light blue while the system core with its subcomponents is displayed in a darker blue.
For future reference a short description of the components is given in Table 2.1.
Additionally many smaller features like logging functionality, math functions, and data types are
integrated in the system core. More detail on the overall architecture has been previously published
in [AV06].

2.1 System Core

The system core is the key library of the inVRs framework. It hosts the communication mecha-
nisms in form of an event and a transformation manager and stores data of the VE in the world
database and the user database.

6

Chapter 2 - Architecture Overview 2.1. System Core

Component Type Short Description

Input Interface Interface Handles input devices
Output Interface Interface Generates audio and multi-display graphics output
User Database Core Component Information about the local and remote users
World Database Core Component Information about the VE
Event Manager Core Component Handles discrete events
Transformation
Manager

Core Component Handles a continuous stream of transformation data
packets

Core Functions Core Component Set of functions for extrapolation, logging, etc.
Interaction Module Interaction processing
Navigation Module Navigation trough the VE
Network Module Distribution of messages via the network
Tools Add-On Graphical effects, physics, menus, editor

Table 2.1: Components of the inVRs framework

2.1.1 Databases

The world database is responsible for keeping the layout of the VE including the description of
its components. It acts as a high-level manager for the geometrical transformations of the VE
objects. Several types of objects are available in an inVRs virtual world.
So-called environments do not have a graphical representation. They are coordinate systems that
are used for grouping and thus the support of culling sub-objects. These environments are often
used in conjunction with the network modules to split the NVE into several sub VEs.
These sub-objects could be either tiles or entities. Tiles are always fixed they can be used as
decorative parts of the VE representing buildings, parts of a landscape or other static objects.
Tiling mechanisms can also be used in the framework to split large datasets into disjoint parts.
The most interesting objects in the world database are the entities, which are typically used for
interaction. To develop complex virtual worlds it is common to define own entity types and equip
them with application specific functionality.
In Figure 2.2 the scene graph representation of environments, tiles and entities is illustrated.
The second database - the user database - manages the local and the remote users of the VE. It
keeps the coordinate systems of the user representations including the cursor data and links these
transformations onto the graphical representations stored inside world database of the system core.

2.1.2 Communication

The communication architecture of the inVRs framework differs significantly from other solutions
in the field. The framework makes a clear distinction between two types of data - events and
transformation data packets.
Transformation data packets contain geometrical transformations, which can be applied on objects
of the VE like entities or the camera. The transformation manager handles these packets. It is
not only used for the distribution of the data, but rather performs significant modification of the
transformation by piping the packets through different stages of the modification process.
The events are discrete messages. Events are to be distributed in order from component to
component. Event cascades where one event triggers another are to be avoided by the application
designer.
In case a network module is available transformation data is typically transmitted via UDP in
an unreliable manner and events are transmitted via TCP in a reliable way. The concepts of
transformation management and the event system have been previously published in [ALBV07].

7

Chapter 2 - Architecture Overview 2.2. Interfaces

Figure 2.2: The Transformation Hierarchy of the World Database

2.2 Interfaces

The interfaces of inVRs are used to abstract input and output devices. Input from tracked devices
as well as standard input from mouse, keyboard and joystick can be parsed and processed by the
input interface.

2.2.1 Input Interface

A mapping from the data gathered by the input devices is performed on an abstract controller,
which can be accessed from the modules or the application. The input data is processed, abstracted
and exposed in the form of buttons, axes and sensors.

2.2.2 Output Interface

The current implementation of inVRs provides an abstraction layer for scene graphs and audio
output. By using the OpenSG multi-display capabilities it is easily possible to render inVRs
applications on CAVE-like [CNSD+92] devices or curved installations like the i-Cone [SG02] as
well as simple monoscopic desktop systems.
For audio output currently only OpenAL is supported. The basic functionality of playing and
stopping audio files is provided so far.

2.3 Modules

The modules of the framework can be loaded individually as plugins. Three basic modules imple-
ment the key features of an NVE. They handle interaction, navigation and network communication.
In general an own user-defined module can replace each module as long as the common interfaces
to the system core are kept. Additional modules as for example for physics simulation or animation
have been successfully integrated into the framework.

8

Chapter 2 - Architecture Overview 2.3. Modules

2.3.1 Navigation

In the inVRs navigation module navigation or travel is composed by three independent models,
which describe speed, orientation and direction. The models parse abstracted pre-processed data
from the input interface and return a scale, a quaternion and a vector which are combined by
the module to a resulting transformation matrix describing the desired offset to the last processed
transformation.
This matrix is typically applied via the transformation manager either on the camera or the
avatar. In the transformation pipe it is common to alter the transformation matrix received from
the navigation module.

2.3.2 Interaction

In the context of the inVRs framework interaction is implemented as a state machine with the
three states idle, selection and manipulation. In order to implement common interaction tech-
niques transition functions have to be developed or chosen from a set of pre-defined functions.
By configuring the transition functions new interaction techniques can be developed. As an exam-
ple the selection process can be exchanged from a virtual hand selection to a ray-casting selection,
while the manipulation could be kept to a virtual hand manipulation.

2.3.3 Network

The network module is implemented using a two-layered approach. The top layer the high-level
interface provides common access to all inVRs and application specific components. User defined
messages, events and transformation data packets can be distributed to all other participants or
a defined Area of Interest (AOI).
The low-level component of the module is designed to be exchanged and to implement specific
network protocols. The communication topology and the database distribution topology is fully
implemented in the low-level component and hidden from the application developer. Additional
optimizations like AOI management are handled as well by the low-level component.

9

Chapter 3

Basic Application Development

To start with the tutorial a set of predefined code (.cpp) and configuration (.xml) files is provided.
Each chapter of the tutorial contains code examples, so called snippets, which can be cut’n’pasted
from the code files or this document into your main file MedievalTown.cpp at the places where
the comments referring to these snippets are placed. The XML configuration files will have to be
altered as well using the snippet mechanism.
You will find for each chapter two separate snippet files. The files for altering the code as well
as the configuration changes can be found in the snippets/ subdirectory. Under each listing
provided in this document you will find the name of the source file as well as a reference to the
according snippet and the destination file where it has to be pasted.
The initial file to begin with is MedievalTown.cpp which you should open now with the editor of
your choice. An additional Eclipse project for the tutorial is available in the same directory.
You will see an OpenSG application with a set of pre-defined functions including main(). For
convenience all needed headers as well as the global variables are already included and defined.
The following list gives an overview on our pre-defined functions.

• void cleanup()

The method performs a system cleanup for OpenSG and later for inVRs all allocated memory
should be set free here.

• void display(void)

This method contains the main display loop which is invoked by a GLUT callback.

• void reshape(int w, int h)

The method is used for reaction on changing of the window size.

• void mouse(int button, int state, int x, int y)

This method reacts to button presses of the mouse.

• void motion(int x, int y)

The method forwards the coordinates of the mouse during mouse motion.

• void keyboard(unsigned char k, int x, int y)

This method reacts to keyboard input.

• void keyboardUp(unsigned char k, int x, int y)

The method reacts on keyboard input. It is invoked when a key is released.

• int setupGLUT(int *argc, char *argv[])

This method sets up the GLUT system and registers required callback functions for example
for display.

10

Chapter 3 - Basic Application Development 3.1. Using OpenSG and GLUT

Compile the medieval town application and execute it. You should now see a simple black window.
In the next steps we will explain what is happening in the main()-function and how inVRs can be
used to display a VE.

3.1 Using OpenSG and GLUT

Let’s have a brief look at the main()-function as it is. The first lines up to the init()-function of
main are used to initialize OpenSG as well as GLUT. A GLUT window is created and a connection
between the window and OpenSG is established.

int main(int argc , char **argv) {

osgInit(argc , argv); // initialize OpenSG

int winid = setupGLUT (&argc , argv); // initialize GLUT

// the connection between GLUT and OpenSG is established

GLUTWindowPtr gwin = GLUTWindow :: create ();

gwin ->setId(winid);

gwin ->init();

Listing 3.1: MedievalTown.cpp - Top Part of main()

In the next part of the main()-function a very basic scene graph operation is performed. An
OpenSG Node is created and filled with a Group Core to give it grouping functionality.
The OpenSG SimpleSceneManager is instantiated and the previously created window is attached
to it. The newly created node is set as the root node of the scene graph. Afterwards we tell the
SimpleSceneManager to show the whole scene. The near clipping plane of the manager is set to
0.1 since it is more convenient for our application.
The rendering of the scene can now start by invoking the glutMainLoop()-function.

NodePtr root = Node:: create ();

beginEditCP(root);

root ->setCore(Group:: create ());

endEditCP(root);

mgr = new SimpleSceneManager; // create the SimpleSceneManager

mgr ->setWindow(gwin); // tell the manager what to manage

mgr ->setRoot(root); // attach the scenegraph to the root node

mgr ->showAll (); // show the whole scene

mgr ->getCamera ()->setNear (0.1);

glutMainLoop (); // GLUT main loop

return 0;

}

Listing 3.2: MedievalTown.cpp - Bottom Part of main()

With this piece of code a very basic OpenSG application without much content is available. The
code provided in the example above is nearly identical to the example from the first OpenSG
tutorial [Abe04]. Now it is time to integrate the inVRs functionality by starting with some simple
configurations.

3.2 Configuring inVRs

Configuring the framework is on first sight very challenging due to the many files which can be
added and altered, but large set of basic configurations and setups is already provided. Most of
the configuration of the framework is available in XML files. It is highly recommended to keep the
configuration file structure of an inVRs application close to the directory structure of the libraries

11

http://www.opensg.org/doc-1.6.0//classosg_1_1Node.html
http://www.opensg.org/doc-1.6.0//classosg_1_1Group.html
http://www.opensg.org/doc-1.6.0//classosg_1_1Core.html
http://www.opensg.org/doc-1.6.0//classosg_1_1SimpleSceneManager.html
http://www.opensg.org/doc-1.6.0//classosg_1_1SimpleSceneManager.html

Chapter 3 - Basic Application Development 3.2. Configuring inVRs

in order to easily find the desired configuration file.
An overview on the standard file structure is given in Figure 3.1. Where the configuration of the
interfaces is shown in grey, the core components are illustrated in dark blue and the modules are
drawn in light blue.
The following parts of the tutorial will configure some core components and modules of the frame-
work. Configuring the interfaces becomes interesting if you are working with multi-display instal-
lations or rather exotic input devices.

Figure 3.1: The inVRs Configuration Hierarchy

The first file to be looked at is the general.xml file, stored in the config/ subdirectory relative
to where your application lies. This file is already setup for your convenience. If we take a look at
the file we will see two basic sections, the general section as well as the paths section. The general
section tells us so far in which other files the actual configuration of the SystemCore and the
OutputInterface is stored, while the paths refer to the storage of plugins, 3D models, textures,
tool components and further inVRs configuration files.

<?xml version="1.0"?>

<!DOCTYPE generalConfig SYSTEM "http: //dtd.inVRs.org/generalConfig_v1 .0a4.dtd">

<generalConfig version="1.0a4">

<!-- This is the configuration for the inVRs Framework -->

<general >

<!-- ***************************** Snippet -2-1 ***************************** -->

<Interfaces >

<option key="outputInterfaceConfiguration" value="outputInterface.xml"/>

</Interfaces >

<SystemCore >

<option key="systemCoreConfiguration" value="systemCore.xml"/>

</SystemCore >

</general >

<paths>

<root directory="./"/>

<path name="Plugins"

directory="/please/insert/your/inVRs/libs/path/here/"/>

<path name="SystemCoreConfiguration" directory="config/systemcore/"/>

<path name="OutputInterfaceConfiguration"

12

http://doxygen.invrs.org//classSystemCore.html
http://doxygen.invrs.org//classOutputInterface.html

Chapter 3 - Basic Application Development 3.2. Configuring inVRs

directory="config/outputinterface/"/>

<!-- ***************************** Snippet -2-2 ***************************** -->

<!-- Paths for World DB Datastructure -->

<path name="WorldConfiguration"

directory="config/systemcore/worlddatabase/"/>

<path name="EnvironmentConfiguration"

directory="config/systemcore/worlddatabase/environment/"/>

<path name="EntityTypeConfiguration"

directory="config/systemcore/worlddatabase/entity/"/>

<path name="TileConfiguration"

directory="config/systemcore/worlddatabase/tile/"/>

<!-- Path for TransformationManager -->

<path name="TransformationManagerConfiguration"

directory="config/systemcore/transformationmanager/" />

<!-- Paths for User DB Datastructure -->

<path name="UserConfiguration"

directory="config/systemcore/userdatabase/" />

<path name="AvatarConfiguration"

directory="config/systemcore/userdatabase/avatar/" />

<!-- ***************************** Snippet -4-6 ***************************** -->

<!-- ***************************** Snippet -2-3 ***************************** -->

<!-- ***************************** Snippet -4-1 ***************************** -->

<!-- **************************** Snippet -5-1 ****************************** -->

<!-- Paths for Models -->

<path name="Models" directory="models/"/>

<path name="Tiles" directory="models/tiles/"/>

<path name="Entities" directory="models/entities/"/>

<path name="Skybox" directory="models/skybox/"/>

<path name="Highlighters" directory="models/highlighters/"/>

<path name="Avatars" directory="models/avatars/"/>

<path name="HeightMaps" directory="models/heightmaps/"/>

<path name="CollisionMaps" directory="models/collisionmaps/"/>

<path name="Cursors" directory="models/cursors/"/>

</paths>

</generalConfig >

Listing 3.3: general.xml

Let’s leave the configuration for now and continue with the application development.
The first step in each application is to load the previously described configuration file. The static
Configuration :: loadConfig() method of the Configuration class is used for this purpose. This
method fills the Configuration class with the general settings and paths from the configuration
file which can lateron be accessed by the application via this class.
We should now insert the first code snippet from the file CodeFile1.cpp into the application,
where the comment ”Snippet-1-1” refers to. So please open the file CodeFile1.cpp stored in
the snippets/ subdirectory and cut’n’paste the parts framed by the comment into the medieval
town application where you find the corresponding comment. You should proceed throughout the
tutorial following the same cut’n’paste mechanism.

// very first step: load the configuration of the file structures , basically

// paths are set. The Configuration always has to be loaded first since each

// module uses the paths set in the configuration -file

if (! Configuration :: loadConfig("config/general.xml")) {

printf("Error: could not load config -file!\n");

return -1;

13

http://doxygen.invrs.org//classConfiguration.html
http://doxygen.invrs.org//classConfiguration.html
http://doxygen.invrs.org//classConfiguration.html

Chapter 3 - Basic Application Development 3.2. Configuring inVRs

}

Listing 3.4: CodeFile1.cpp - Snippet-1-1 → MedievalTown.cpp

We do now trigger the configuration mechanism of the SystemCore by using the static method
SystemCore :: configure(). This configuration mechanism will often result in subsequent con-
figuration loading and initialization of other components. In the following code snippet the
SystemCore and the OutputInterface are initialized with the configuration files read from the
general section of the basic configuration file previously loaded by the Configuration class. In
the configuration file for the SystemCore class references to other configuration files for the core
components are located. These core components are also automatically initialized by this method
call.
To combine OpenSG and inVRs a SceneGraphInterface has to be created. Currently only an
interface to OpenSG is available but an interface to OpenSceneGraph is planned as well, just to
allow for a greater flexibility. The OpenSGSceneGraphInterface is automatically loaded by the
OutputInterface in the SystemCore :: configure() method.

std:: string systemCoreConfigFile = Configuration :: getString(

"SystemCore.systemCoreConfiguration");

std:: string outputInterfaceConfigFile = Configuration :: getString(

"Interfaces.outputInterfaceConfiguration");

// !!!!!! Remove in tutorial part 2, Snippet -2-1 - BEGIN

if (! SystemCore :: configure(systemCoreConfigFile , outputInterfaceConfigFile)) {

printf("Error: failed to setup SystemCore !\n");

return -1;

}

// !!!!!! Remove - END

Listing 3.5: CodeFile1.cpp - Snippet-1-2 → MedievalTown.cpp

Inside the provided XML configuration files the layout of a medieval town was already pre-defined
which has now been loaded. An OpenSG sub scene graph, in form of the top node of our scene
graph, retrieved from the OpenSGSceneGraphInterface is in the next step attached to the root
node of the so far empty OpenSG scene. Therefore the OpenSGSceneGraphInterface has to be
obtained from the OutputInterface first. Afterwards a node is retrieved from this class which
contains most part of the data defined in the configuration and stored in the WorldDatabase.
As a result we are able to change the layout of models by altering the XML file instead of changing
the source. Nor do we have to recompile.

OpenSGSceneGraphInterface* sgIF =

dynamic_cast <OpenSGSceneGraphInterface *>(OutputInterface ::

getSceneGraphInterface ());

if (!sgIF) {

printf("Error: Failed to get OpenSGSceneGraphInterface !\n");

printf("Please check if the OutputInterface configuration is correct !\n");

return -1;

}

// retrieve root node of the SceneGraphInterface (method is OpenSG specific)

NodePtr scene = sgIF ->getNodePtr ();

root ->addChild(scene);

Listing 3.6: CodeFile1.cpp - Snippet-1-3 → MedievalTown.cpp

Finally we have to enhance the cleanup method slightly in order to remove the additional inVRs
functionality and data structures we have created at application shutdown. Thus we have to
cleanup the SystemCore.

14

http://doxygen.invrs.org//classSystemCore.html
http://doxygen.invrs.org//classSystemCore.html
http://doxygen.invrs.org//classSystemCore.html
http://doxygen.invrs.org//classOutputInterface.html
http://doxygen.invrs.org//classConfiguration.html
http://doxygen.invrs.org//classSystemCore.html
http://doxygen.invrs.org//classSceneGraphInterface.html
http://doxygen.invrs.org//classOpenSGSceneGraphInterface.html
http://doxygen.invrs.org//classOutputInterface.html
http://doxygen.invrs.org//classSystemCore.html
http://doxygen.invrs.org//classOpenSGSceneGraphInterface.html
http://doxygen.invrs.org//classOpenSGSceneGraphInterface.html
http://doxygen.invrs.org//classOutputInterface.html
http://doxygen.invrs.org//classWorldDatabase.html
http://doxygen.invrs.org//classSystemCore.html

Chapter 3 - Basic Application Development 3.3. Working with the WorldDatabase

SystemCore :: cleanup (); // clean up SystemCore and registered components

Listing 3.7: CodeFile1.cpp - Snippet-1-4 → MedievalTown.cpp

Before we can run our application now we have to change the path entry ”Plugins” in the main
configuration file. The inVRs modules and interfaces are implemented as plugins and can be
dynamically exchanged. Therefore the path to the libraries in which the modules and interfaces
are stored have to be set.
Please make sure to alter this path and provide the proper path describing where the libraries are
stored. Usually these libraries are located in the lib subdirectory of the inVRs main directory.

<path name="Plugins"

path="/please/insert/your/inVRs/libs/path/here/" />

Listing 3.8: general.xml - Enter Path to inVRs Libraries

If we recompile and start our application now we should be able to see a medieval town. This is
due to the use of the WorldDatabase which will be explained in the following section. We are able
to navigate through it by using the OpenSG SimpleSceneManager functionality.

3.3 Working with the WorldDatabase

The WorldDatabase stores the definition of the objects of the VE as well as their layout. In our
case it was used for storing the sub scene graphs of the medieval town.
In general the WorldDatabase can distinguish between these four different types of objects:

• Environments

• Tiles

• Enities

• EntityTypes

An Environment acts as local coordinate system for partitioning the VE into separate regions.
Environments can support the scene graphs’ culling mechanisms or they might as well be used in
the area of network communication for splitting one VE up and distributing it over several servers.
An Environment can contain tiles and entities. The definition of the environment is kept in the
case of our tutorial in the configuration hierarchy under config/systemcore/worlddatabase/

environment/. Our application uses a single environment, but in general it is of course pos-
sible to have several environments. Their arrangement is stored again in an XML-file - the
environmentLayout.xml located in the same directory.
A Tile is a rectangular object in the scene. The tiles perform rather a decorative function and
are used in some inVRs applications for simplified layouting of the VE. An example for such a
scenario was the creation of a race track as implemented in the netOdrom application [AWL+07].
A single tile is used in this tutorial to represent the terrain. The description for this tile can be
found in the config/systemcore/worlddatabase/tiles/ directory.
An Entity is an interactive object which can be moved or placed arbitrarily inside the VE. When
developing own applications it is very common that an own EntityType with application specific
functionality is created. These entities are one of the key parts to create life-like and vivid virtual
worlds. Their configuration is stored in config/systemcore/worlddatabase/entities/.
Figure 3.2 gives a top overview on the relation of these objects. Tiles, environments and entities
are displayed.
In the configuration of the WorldDatabase references to the configuration files of its different
objects, namely Entity, Tile and Environment are given. It is simply a wrapper pointing at the

15

http://doxygen.invrs.org//classWorldDatabase.html
http://www.opensg.org/doc-1.6.0//classosg_1_1SimpleSceneManager.html
http://doxygen.invrs.org//classWorldDatabase.html
http://doxygen.invrs.org//classWorldDatabase.html
http://doxygen.invrs.org//classEnvironment.html
http://doxygen.invrs.org//classEnvironment.html
http://doxygen.invrs.org//classTile.html
http://doxygen.invrs.org//classEntity.html
http://doxygen.invrs.org//classEntityType.html
http://doxygen.invrs.org//classWorldDatabase.html
http://doxygen.invrs.org//classEntity.html
http://doxygen.invrs.org//classTile.html
http://doxygen.invrs.org//classEnvironment.html

Chapter 3 - Basic Application Development 3.3. Working with the WorldDatabase

Figure 3.2: The World Database seen from Top

three major world database components. A reference to the environments is provided again in the
environmentLayout.xml file

<?xml version="1.0"?>

<!DOCTYPE worldDatabase SYSTEM "http: //dtd.inVRs.org/worldDatabase_v1 .0a4.dtd">

<worldDatabase version="1.0a4">

<entityTypes configFile="entities.xml"/>

<tiles configFile="tiles.xml"/>

<environmentLayout configFile="environmentLayout.xml"/>

</worldDatabase >

Listing 3.9: worldDatabase.xml

We should now take a closer look on how entities can be defined in general. No need to inspect all of
our medieval town entities, but let’s understand at least one of them. The configuration stored in
the file config/systemcore/worlddatabase/entity/entities.xml describes the objects which
are available in our VE. Or better it describes a certain type of entity which can be used in the
VE.
In the first line the type is identified, the human-readable name of the object is given, and it is
determined whether the object is considered to be fixed. The fixed attribute describes if an entity
of that type is either attached to the scene or it can be selected and manipulated. In the second
line the attribute representation appears, which defines, whether the sub scene graph of the model
is already present with another entity type.
The next line follows with the file type and the file name of the sub scene graph which is to be
loaded 1. Providing the file type might not carry that much relevance if OpenSG is used as a scene
graph, but in general it can be important.
Next an initial transformation of the representation of the entity is set. So every entity of this type
is subject to this transformation, for which typically only the scale attribute is used, translation
and rotation 2 are often kept to their basic values.

<?xml version="1.0"?>

<!DOCTYPE entityTypes SYSTEM "http://dtd.inVRs.org/entityTypes_v1 .0a4.dtd">

<entityTypes version="1.0a4">

<entityType typeId="1" name="Box01" fixed="0">

<representation copy="false">

<file type="VRML" name="box01.wrl"/>

<transformation >

<scale x="0.9" y="0.9" z="0.9"/>

1the path to theses files is stored as expected in the initial configuration
2which is in this case stored as a quaternion

16

Chapter 3 - Basic Application Development 3.3. Working with the WorldDatabase

</transformation >

</representation >

</entityType >

...

</entityTypes >

Listing 3.10: entities.xml

The Tile which is used in our town is defined in config/systemcore/worlddatabase/tile/

tiles.xml. An id as well as a human readable name is given for each tile. Two groups describe
the properties of the tile and its representation in the scene.
The properties define the size in a planar dimension, while the height and the rotation can be
applied to turn the tile and move it upwards. This design choice was made to provide a more intu-
itive layout when using an editor or manually editing the scene configuration. The representation
again describes whether the tile should be copied or whether multiple references to it are allowed.
Again an initial transformation as explained with the entities is applied.

<?xml version="1.0"?>

<!DOCTYPE tiles SYSTEM "http://dtd.inVRs.org/tiles_v1 .0a4.dtd">

<tiles version="1.0a4">

<tile id="1" name="Terrain21">

<tileProperties >

<size xSize="400" zSize="400"/>

<adjustment height="0" yRotation="0"/>

</tileProperties >

<representation copy="false">

<file type="OSB" name="PhysicsTestLandscape21_shader.osb"/>

<transformation >

<translation x="0" y="0" z=" -400"/>

<rotation x="0" y="1" z="0" angleDeg="0"/>

<scale x="200" y="200" z="200"/>

</transformation >

</representation >

</tile>

</tiles>

Listing 3.11: tiles.xml

The environmentLayout.xml file stores the arrangement of the different environments. A tile
spacing is defined which is not relevant for us since we are only using a single tile in this tutorial.
The same is true for the parameters xLoc and zLoc which can play in more advanced applications
a role for positioning an Environment in case multiple environments are used. Typically several
links to the specific environment configurations are used.
The important aspect for our tutorial application is the single reference to the file environment.

xml which is used to store the setup as well as the arrangement of the entities which appear in
our medieval town virtual world.

<?xml version="1.0"?>

<!DOCTYPE environmentLayout SYSTEM "http: //dtd.inVRs.org/environmentLayout_v1 .0a4.

dtd">

<environmentLayout version="1.0a4">

<tileGrid xSpacing="400" zSpacing="400"/>

<environment id="1" configFile="environment.xml" xLoc="0" zLoc="0"/>

</environmentLayout >

Listing 3.12: environmentLayout.xml

If we take now a brief look at parts of environment.xml to which a reference was provided
previously in environmentLayout.xml, we are able to rearrange objects.

17

http://doxygen.invrs.org//classTile.html
http://doxygen.invrs.org//classEnvironment.html

Chapter 3 - Basic Application Development 3.4. Summary

Let’s skip the details behind the map attribute, which is in the example defining a map containing
a single Tile representing the terrain which has the id 1.
The entrypoint attributes provide an initial transformation which tells us where the user enters
the VE and in which direction he looks. They are basically a classical viewpoint setting.
The entity attributes describe the transformation of an Entity on an per entity basis rather than
on an EnitityType basis. In the context of object oriented languages the entity type can be
compared to a class whereas an entity described in an environment represents an instance of this
class.
Additionally a unique entity id has to be provided. With this id the entity can be accessed later
on inside the application. In case entities are created during runtime they receive a unique id
gathered from an idpool.

<?xml version="1.0"?>

<!DOCTYPE environment SYSTEM "http://dtd.inVRs.org/environment_v1 .0a4.dtd">

<environment version="1.0a4">

<tileMap xDimension="1" zDimension="1">

1

</tileMap >

<entryPoint xPos="268" yPos="30" zPos="183" xDir="-1" yDir="0" zDir="0.4"/>

<entity id="1" typeId="63">

<transformation >

<translation x="228.52" y="9.40" z="177.17"/>

<rotation x="1.00" y="0.00" z="0.00" angleDeg="0.00"/>

<scale x="1.00" y="1.00" z="1.00"/>

</transformation >

</entity >

<entity id="2" typeId="64">

<transformation >

<translation x="219.24" y="9.10" z="177.49"/>

<rotation x="1.00" y="0.00" z="0.00" angleDeg="0.00"/>

<scale x="1.00" y="1.00" z="1.00"/>

</transformation >

</entity >

...

</environment >

Listing 3.13: environment.xml

Figure 3.3 shows the virtual world we have created so far.

Figure 3.3: The virtual medieval town

3.4 Summary

So far we have not done that much, but we we’re already able to display a scene and layout it with
simple XML definitions. Initially a basic OpenSG application was created which was enhanced

18

http://doxygen.invrs.org//classTile.html
http://doxygen.invrs.org//classEntity.html
http://doxygen.invrs.org//classEnitityType.html

Chapter 3 - Basic Application Development 3.4. Summary

with the WorldDatabase for simplified world and respectively scene graph layout. Loading and
configuring the core was briefly demonstrated, while the description of the world database should
give us now an idea on how to define a VE using inVRs.
Only one component of the SystemCore has been used yet and things will get more exciting soon
when the scene becomes interactive. In the next chapter we will learn about navigation, user input
and skyboxes.

19

http://doxygen.invrs.org//classWorldDatabase.html
http://doxygen.invrs.org//classSystemCore.html

Chapter 4

Navigation and Skybox

So far we are able to change the layout of our world via an XML specification, which is not too
exciting yet. The navigation or travel through the scene you have experienced in the previous part
is provided by the SimpleSceneManager of OpenSG. This navigation is now to be changed with
the help of the Navigation module of the inVRs framework.
To achieve this we have to register additional components, like the input interface for parsing user
input, and the navigation module, to the core. Other core components besides the world database
have not been used so far, but they will in this chapter. The transformation management and the
user database will be used in conjunction with the navigation module. Significant configuration
has to take place in order to include the components.
Additionally we thought it is nice to have a brighter environment with sky and clouds surrounding
our medieval town. Such a visual improvement is typically achieved in the area of games or similar
virtual worlds by the use of skyboxes which are going to be introduced as well in this chapter.

4.1 Adding inVRs Components

Let’s get started with the implementation and configuration of the navigation by adding the
needed components. In order to use inVRs components in general they have to be registered at
the core. But besides registration at the core the components might need to trigger user defined
functionality during their initialization. Thus initialization callbacks have to be registered initially
as well.
The additional components we are going to use now are the Controller of the InputInterface for
gathering user input and the Navigation module for the processing of this input. In order to pass
the calculated TransformationData to the camera we use the TransformationManager of the
core, which has to be configured. We do need another core component the UserDatabase which
contains user transformations and the camera transformations. This database is already fully set
up and will furthermore not be described in this tutorial.
An overloaded configure method is to be called in order to pass all loaded configuration files, in
our case one for each inVRs component type. This configure method triggers the whole system
configuration and will load the plugins and invoke registered callbacks as we will see later.
Watch out if you insert the following snippet in the code. The original configure method as used
in the previous section has to be removed as indicated in the comment.

// !!!!!! Remove part of Snippet -1-2 (right above)

// in addition to the SystemCore config file , modules and interfaces config

// files have to be loaded.

std:: string modulesConfigFile = Configuration :: getString(

"Modules.modulesConfiguration");

std:: string inputInterfaceConfigFile = Configuration :: getString(

"Interfaces.inputInterfaceConfiguration");

20

http://www.opensg.org/doc-1.6.0//classosg_1_1SimpleSceneManager.html
http://doxygen.invrs.org//classNavigation.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classNavigation.html
http://doxygen.invrs.org//classTransformationData.html
http://doxygen.invrs.org//classTransformationManager.html
http://doxygen.invrs.org//classUserDatabase.html

Chapter 4 - Navigation and Skybox 4.1. Adding inVRs Components

if (! SystemCore :: configure(systemCoreConfigFile , outputInterfaceConfigFile ,

inputInterfaceConfigFile , modulesConfigFile)) {

printf("Error: failed to setup SystemCore !\n");

printf("Please check if the Plugins -path is correctly set to the inVRs -lib

directory in the ");

printf("’final/config/general.xml’ config file , e.g.:\n");

printf("<path name =\" Plugins \" path =\"/ home/guest/inVRs/lib\"/>\n");

return -1;

}

Listing 4.1: CodeFile2.cpp - Snippet-2-1 → MedievalTown.cpp

We have to update as well the general configuration stored in general.xml and provide settings
defining in which files the configurations of the newly integrated component types are located.

<Modules >

<option key="modulesConfiguration" value="modules.xml" />

</Modules >

<Interfaces >

<option key="inputInterfaceConfiguration" value="inputInterface.xml" />

</Interfaces >

Listing 4.2: Snippets2.xml - Snippet-2-1 → general.xml

Additionally the paths for the configurations of the modules and the InputInterface have to be
defined.

<path name="InputInterfaceConfiguration" directory="config/inputinterface/" />

<path name="ModulesConfiguration" directory="config/modules/" />

Listing 4.3: Snippets2.xml - Snippet-2-2 → general.xml

In order to parse the configurations of the individual components the paths to their configuration
files have to be set as well in the general.xml configuration file.

<!-- Path for Interfaces Datastructure -->

<path name="ControllerManagerConfiguration"

directory="config/inputinterface/controllermanager/" />

<!-- Paths for Module Datastructure -->

<path name="NavigationModuleConfiguration"

directory="config/modules/navigation/" />

Listing 4.4: Snippets2.xml - Snippet-2-3 → general.xml

In order to have access to the different interfaces and components during the initialization and
configuration phase callback functions have to be defined. They will be triggered at the initializa-
tion of the SystemCore. The initInputInterface()-method is registered as a callback function.
During the initialization it is important to get a pointer to the interface, or more specific in our
case a pointer to the controller, in order to access it later on in the application.

void initInputInterface(ModuleInterface* moduleInterface) {

// store ControllerManger and the Controller as soon as the ControllerManager

// is initialized

if (moduleInterface ->getName () == "ControllerManager") {

controllerManager = (ControllerManager *) moduleInterface;

controller = (Controller *) controllerManager ->getController ();

}

}

Listing 4.5: CodeFile2.cpp - Snippet-2-2 → MedievalTown.cpp

21

http://doxygen.invrs.org//classInputInterface.html
http://doxygen.invrs.org//classSystemCore.html

Chapter 4 - Navigation and Skybox 4.2. Navigation

The initModules()-method is invoked as well by a callback. The design approach is analog to the
previous introduced method. It takes care of the modules instead of the interfaces. As you can
see this snippet includes references to other snippets. In the placeholder other modules will have
to be registered in later chapters.

void initModules(ModuleInterface* module) {

// store the Navigation as soon as it is initialized

if (module ->getName () == "Navigation") {

navigation = (Navigation *) module;

}

// --//

// Snippet -4-1 //

// --//

// --//

// Snippet -5-1 //

// --//

}

Listing 4.6: CodeFile2.cpp - Snippet-2-3 → MedievalTown.cpp

Now we take care of the needed component types and register our previously defined callback
functions at the inVRs SystemCore and InputInterface.

// register callbacks

InputInterface :: registerModuleInitCallback(initInputInterface);

SystemCore :: registerModuleInitCallback(initModules);

Listing 4.7: CodeFile2.cpp - Snippet-2-4 → MedievalTown.cpp

This whole setup of the configuration files might seem to be unintuitive and a lot of work at the
beginning, but it is needed to provide full flexibility. Once one has established the configuration
structure most developed setups can be used later on for future applications.
Having now finally finished our component setup it is time to start with the actual navigation
implementation.

4.2 Navigation

The approach inVRs uses for navigation might seem fairly unconventional compared to straight
forward hard coded implementations of navigation techniques, but it comes with many advantages
especially in the areas or reusability and structure if we look at other solutions. Navigation in
the context of the inVRs framework is composed by three independent parts: speed, orienta-
tion, and direction. These different aspects are implemented as individual models (SpeedModel,
OrientationModel, DirectionModel) that are combined in order to generate a resulting matrix.
This transformation matrix which is stored in form of a TransformationData packet contains
information about the new position and orientation of the object which is being bound to the
navigation.
The object which is controlled by the navigation does not necessarily have to be the camera. It
could be for example as well an avatar, to which a dangling camera is attached like it is often the
case in third person computer games.
More details on the navigation composition approach and its individual models can be found in
[AHKV04].
In order to generate their results these three types of models have to gather user input. Thus they
poll data from an abstract controller which is implemented inside the input interface. Describing

22

http://doxygen.invrs.org//classSystemCore.html
http://doxygen.invrs.org//classInputInterface.html
http://doxygen.invrs.org//classSpeedModel.html
http://doxygen.invrs.org//classOrientationModel.html
http://doxygen.invrs.org//classDirectionModel.html
http://doxygen.invrs.org//classTransformationData.html

Chapter 4 - Navigation and Skybox 4.2. Navigation

the Controller in a detailed way would go to far inside this part of the tutorial. Let’s for sim-
plicity just accept, that the input generated from devices is exposed in the Controller class in
abstract form of buttons (providing boolean values), axes (offering 2D data) and sensors (storing
3D transformations) to all inVRs components and the own developed application. Callbacks can
be registered as well on button presses and releases.
Before we can add the changes in the source code we still have to update some configurations. At
first we have to add an avatar in our configuration which will be used to represent the user in the
virtual world. A more detailed description of the avatar configuration is presented in section 7.4

<avatar configFile="avatar.xml"/>

Listing 4.8: Snippets2.xml - Snippet2-4 → userDatabase.xml

Next we have to add the Navigation module in the module configuration file so that it is auto-
matically loaded at application startup.

<module name="Navigation" configFile="navigation.xml" />

Listing 4.9: Snippets2.xml - Snippet2-5 → modules.xml

Now that the configurations are updated we can have a look at the source code. As a first
step we have to retrieve the local users avatar and camera. We have worked so far with the
WorldDatabase and now it is time to access the UserDatabase. Thus the localUser is requested
from the UserDatabase. Pointers to the camera and the avatar of the user are stored for later
access. Since we are working in a single user environment so far the avatar is not to be displayed
yet. The initial transformation for a local user is requested from the world database 1 and set on
the local user.

// fetch users camera , it is used to tell the Navigator where we are

localUser = UserDatabase :: getLocalUser ();

if (! localUser) {

printd(ERROR , "Error: Could not find localUser !\n");

return -1;

}

camera = localUser ->getCamera ();

if (! camera) {

printd(ERROR , "Error: Could not find camera !\n");

return -1;

}

avatar = localUser ->getAvatar ();

if (! avatar) {

printd(ERROR , "Error: Could not find avatar !\n");

return -1;

}

avatar ->showAvatar(false);

// set our transformation to the start transformation

TransformationData startTrans =

WorldDatabase :: getEnvironmentWithId (1) ->getStartTransformation (0);

localUser ->setNavigatedTransformation(startTrans);

Listing 4.10: CodeFile2.cpp - Snippet-2-5 → MedievalTown.cpp

Now it is time to disconnect the OpenSGs’ navigation from our VE and replace it with the
navigation mechanisms of the inVRs framework. First we have to disable the Navigator of the

1you might remember we have encountered the initial transformation in the previous chapter in the environment
configuration

23

http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classNavigation.html
http://doxygen.invrs.org//classWorldDatabase.html
http://doxygen.invrs.org//classUserDatabase.html
http://doxygen.invrs.org//classUserDatabase.html
http://www.opensg.org/doc-1.6.0//classosg_1_1Navigator.html

Chapter 4 - Navigation and Skybox 4.2. Navigation

SimpleSceneManager.
A timer is initialized which is needed later to pass the time difference between the last navigation
step to the current navigation step. A common mistake is to make the navigation speed dependent
on the framerate.

// Navigator is part of SimpleSceneManager and not of the inVRs framework

Navigator *nav = mgr ->getNavigator ();

nav ->setMode(Navigator ::NONE); // turn off the navigator

lastTimeStamp = timer.getTime (); // initialize timestamp;

camMatrix = gmtl:: MAT_IDENTITY44F; // initial setting of the camera matrix

Listing 4.11: CodeFile2.cpp - Snippet-2-6 → MedievalTown.cpp

The updating of the navigation module is performed once per frame. Thus the display method is
modified for this update. The Controller of the input interface is internally updated by calling
its update()-method. The devices 2 are polled and the new values are set. Next the Navigation

has to be updated using the newly gathered values from the controller. Since the navigation trans-
formations are passed through the TransformationManager the processing of the manager has to
be invoked as well. This invocation is triggered by calling the TransformationManager :: step()
method, with the timer delta value describing the passed time since the previous call and a prior-
ity. The priority is needed for executing the transformations of the navigation prior to all other
transformations. More detail is provided in the Programmers’ Guide and the Doxygen3 API
documentation.

float currentTimeStamp;

Matrix osgCamMatrix;

float dt; // time difference between currentTimestamp and lastTimestamp

currentTimeStamp = timer.getTime (); //get current time

dt = currentTimeStamp - lastTimeStamp;

controller ->update (); // poll/update associated devices

navigation ->update(dt); // update navigation

// process transformations which belong to the pipes with priority 0x0E000000

TransformationManager ::step(dt, 0x0E000000);

camera ->getCameraTransformation(camMatrix); // get camera transformation

Listing 4.12: CodeFile2.cpp - Snippet-2-7 → MedievalTown.cpp

The camera has to be updated where we do need a conversion from GMTL into OpenSG. The
transformation of the camera has to be passed in the Navigator of the SimpleSceneManager. The
step of the TransformationManager has to be invoked and one step of iterations is considered to
be passed, thus the old out-of-date timestamp is replaced with the current time.

set(osgCamMatrix , camMatrix); // convert gmtl matrix into OpenSG matrix

Navigator* nav = mgr ->getNavigator ();

nav ->set(osgCamMatrix); // plug new camera matrix into navigator

TransformationManager ::step(dt); // process the remaining pipes

lastTimeStamp = currentTimeStamp;

Listing 4.13: CodeFile2.cpp - Snippet-2-8 → MedievalTown.cpp

2in our case GlutCharKeyboardDevice and GlutMouseDevice which we will see soon
3http://www.invrs.org/doxygen/

24

http://www.opensg.org/doc-1.6.0//classosg_1_1SimpleSceneManager.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classNavigation.html
http://doxygen.invrs.org//classTransformationManager.html
http://doxygen.invrs.org//classTransformationManager.html
http://www.opensg.org/doc-1.6.0//classosg_1_1Navigator.html
http://www.opensg.org/doc-1.6.0//classosg_1_1SimpleSceneManager.html
http://doxygen.invrs.org//classTransformationManager.html
http://doxygen.invrs.org//classGlutCharKeyboardDevice.html
http://doxygen.invrs.org//classGlutMouseDevice.html
http://www.invrs.org/doxygen/

Chapter 4 - Navigation and Skybox 4.2. Navigation

4.2.1 Managing User Input

To finally access the keyboard or mouse we have to forward the input gathered by GLUT to
our input interface. The GlutMouseDevice implements a wrapper for a GLUT mouse and can
provide input to our Controller object which again is accessed internally by the models of the
Navigation. Thus a fair bit of minor changes in the already provided GLUT callback functions
have to be applied.
In the reshape() - function we additionally pass the current window size to the GlutMouseDevice

which is registered at our Controller.

// the mouse device must be aware of the window size in pixel

GlutMouseDevice :: setWindowSize(w, h);

Listing 4.14: CodeFile2.cpp - Snippet-2-9 → MedievalTown.cpp

The mouse state and the buttons have to be passed to the our newly used input processing unit,
the GlutMouseDevice in the callback mouse(). Watch out in this example the lines above the
snipped have to be replaced.

// !!!!!! Remove part above

// instead of calling the SimpleSceneManager we delegate the message to

// our mouse device

GlutMouseDevice :: cbGlutMouse(button , state , x, y);

Listing 4.15: CodeFile2.cpp - Snippet-2-10 → MedievalTown.cpp

The coordinates of the mouse cursor have to be passed during movement of the mouse to the
GlutMouseDevice. This has to take place in the motion() callback function. A similar replacement
as in the previous change has to take place.

// !!!!!! Remove part above

// instead of calling the SimpleSceneManager we delegate the message to

// our mouse device

GlutMouseDevice :: cbGlutMouseMove(x, y);

Listing 4.16: CodeFile2.cpp - Snippet-2-11 → MedievalTown.cpp

In the keyboard()-function an additional line of code has to be integrated in order to pass the
key pressing to the input interface.

// notify keyboard device about GLUT message

GlutCharKeyboardDevice :: cbGlutKeyboard(k, x, y);

Listing 4.17: CodeFile2.cpp - Snippet-2-12 → MedievalTown.cpp

If we move around with the mouse to change the orientation of the camera and we are in the VE
we don’t want to see the mouse cursor moving. It is basically attached to the window but not
displayed. On the other hand we might want to move the cursor out of our current window back
on the desktop. To allow switching between the modes we have to toggle the mouse grabbing. By
pressing “m” or “SHIFT-m” grabbing can be toggled.

// grab the mouse

case ’m’:

case ’M’: {

grabMouse = !grabMouse;

GlutMouseDevice :: setMouseGrabbing(grabMouse);

} break;

25

http://doxygen.invrs.org//classGlutMouseDevice.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classNavigation.html
http://doxygen.invrs.org//classGlutMouseDevice.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classGlutMouseDevice.html
http://doxygen.invrs.org//classGlutMouseDevice.html

Chapter 4 - Navigation and Skybox 4.3. Skybox

Listing 4.18: CodeFile2.cpp - Snippet-2-13 → MedievalTown.cpp

In the keyboardUp()-function an additional line of code has to be integrated in order to pass the
key release to the GlutCharKeyboardDevice. This is important if we stop moving for example.

GlutCharKeyboardDevice :: cbGlutKeyboardUp(k, x, y);

Listing 4.19: CodeFile2.cpp - Snippet-2-14 → MedievalTown.cpp

In order to properly set up your navigation you have to configure the individual models for di-
rection, speed and orientation. For configuring such a model three different aspects have to be
considered, the type of the model which is used including its specific parameters. Additionally a
mapping from the controller object to the navigation models has to be established in the argument
attribute.
The configured mapping basically checks for the orientation the mouse movement, for the accel-
eration and for changing the translation the keys ’w’, ’a’, ’s’, and ’d’ are looked up. This is now
your new input for using the navigation technique composed by the three navigation models.

<?xml version="1.0"?>

<!DOCTYPE navigation SYSTEM "http://dtd.inVRs.org/navigation_v1 .0a4.dtd">

<navigation version="1.0a4">

<translationModel type="TranslationViewDirectionButtonStrafeModel">

<arguments >

<arg key="frontIndex" type="uint" value="3"/>

<arg key="backIndex" type="uint" value="4"/>

<arg key="leftIndex" type="uint" value="5"/>

<arg key="rightIndex" type="uint" value="6"/>

</arguments >

</translationModel >

<orientationModel type="OrientationDualAxisModel" angle="20">

<arguments >

<arg key="xAxisIndex" type="int" value="0"/>

<arg key="yAxisIndex" type="int" value="1"/>

<arg key="buttonIndex" type="int" value="1"/>

</arguments >

</orientationModel >

<speedModel type="SpeedMultiButtonModel" speed="10">

<arguments >

<arg key="accelButtonIndices" type="string" value="3 4 5 6"/>

</arguments >

</speedModel >

</navigation >

Listing 4.20: navigation.xml

Of course this is just an example configuration for the Navigation. Many different models are
available in inVRs and newly developed ones can be easily integrated. A whole set of model com-
binations is defined which allows easy switching between navigation techniques without altering
the application code.

4.3 Skybox

Now it is time to lighten up the medieval town of our application and take it out of the dark ages
by putting a nice blue sky around it.
Approaches to implement this functionality would be sky domes, just a simple blue background
color or skyboxes, which is the way we follow. Skyboxes in general typically consist of six textures

26

http://doxygen.invrs.org//classGlutCharKeyboardDevice.html
http://doxygen.invrs.org//classNavigation.html

Chapter 4 - Navigation and Skybox 4.3. Skybox

that are mapped on a cube. They are used to visualize scene surroundings and the landscape at
far distances. An example for such a skybox is given in Figure 4.1.

Figure 4.1: An Example Skybox

Since it is often case that the bottom or the top part of a skybox can be displayed at lower
resolutions, the inVRs Skybox is allowed to have the shape of an actual box rather than a cube.
The proportional dimensions of the box are set as the first three parameters of the init()-method
of the skybox. The fourth parameter describes the distance from the camera to the far clipping
plane.
In order to use a skybox, which is provided as a scene graph specific tool, the following snippet
has to be included. We use again a path from the initial configuration file to find out where the
textures of the skybox are located on disk.

// generate and configure the SkyBox

std:: string skyPath = Configuration :: getPath("Skybox");

skybox.init(5,5,5, 1000, (skyPath+"lostatseaday/lostatseaday_dn.jpg").c_str(),

(skyPath+"lostatseaday/lostatseaday_up.jpg").c_str(),

(skyPath+"lostatseaday/lostatseaday_ft.jpg").c_str(),

(skyPath+"lostatseaday/lostatseaday_bk.jpg").c_str(),

(skyPath+"lostatseaday/lostatseaday_rt.jpg").c_str(),

(skyPath+"lostatseaday/lostatseaday_lf.jpg").c_str());

Listing 4.21: CodeFile2.cpp - Snippet-2-15 → MedievalTown.cpp

After having generated the skybox we have to attach it to the scene graph. We retrieve the
OpenSG NodePtr of our Skybox object, which was internally generated by the skybox tool and
attach it as a child node to the root node of the scene.

// add the SkyBox to the scene

root ->addChild(skybox.getNodePtr ());

Listing 4.22: CodeFile2.cpp - Snippet-2-16 → MedievalTown.cpp

Since skyboxes are always at the same position as the camera but they of course are attached
to the orientation of the scene an immediate connection has to be established in the position
attribute. Therefore the camera position is passed directly to the Skybox object.

skybox.setupRender(camera ->getPosition ());

Listing 4.23: CodeFile2.cpp - Snippet-2-17 → MedievalTown.cpp

27

http://doxygen.invrs.org//classSkybox.html
http://www.opensg.org/doc-1.6.0//classosg_1_1NodePtr.html
http://doxygen.invrs.org//classSkybox.html
http://doxygen.invrs.org//classSkybox.html

Chapter 4 - Navigation and Skybox 4.4. Summary

Now it is time to recompile and execute the application again. You should now be able to see
a nice blue sky around your medieval village which can also be seen in Figure 4.2. Doesn’t that
make you happy? Well, there is still much more to come.

Figure 4.2: The medieval town under a blue sky

4.4 Summary

After having completed this chapter we can now use our own navigation models to control camera
or basically user movement throughout the VE.
A detailed explanation on how inVRs components can be integrated has been given in order to
register and configure the required modules and interfaces.
The access to the input devices has been briefly introduced by decoupling calls in the GLUT
callback functions to OpenSGs’ SimpleSceneManager and replacing it with inVRs devices and an
abstract controller.
As you can see we are moving a fair bit away from standard OpenSG. Now we are able fly through
our medieval town, by using previously defined navigation models. The town has been polished
up a bit through the inclusion of an additional tool. The next step introduces gravity and collision
with the scene.

28

http://www.opensg.org/doc-1.6.0//classosg_1_1SimpleSceneManager.html

Chapter 5

Transformation Management

Since we want to implement terrain following and collision detection it is useful, to work with the
external tools for height and collision maps in combination with the transformation management.
The transformation management is a specific concept implemented in inVRs. One of the two
communication units of the SystemCore is the TransformationManager which is able to receive
TransformationData packets from arbitrary inVRs components as well as user defined com-
ponents or an application. It can modify them and afterwards distribute the packets to other
components.
If we want to integrate for example gravity or collision detection in an inVRs VE it is recommended
to use the TransformationManager to post-process the data received from the Navigation and
apply it on the camera.
The key idea is to pipe transformations through the manager after having set up a pipe config-
uration beforehand. But before we start to explain the concepts of the modifiers, the pipes and
the manager in detail, it is important to understand how the collision maps and the height maps
work.

5.1 Height and Collision Maps

One of the additional features of the inVRs framework is a 2D Physics module which allows for
fast collision detection and response [BLAV06]. Besides the module additional tools for the use of
height maps and collision maps were developed.
Figure 5.1 illustrates such a height map, showing a grid containing the height values and addi-
tionally the normal vectors at the given grid positions. Height maps are ideal to implement fast
terrain following. Initially these height maps have to be generated based on a an input model.
They can be pre-generated offline or created dynamically during runtime.

Figure 5.1: An Example Height Map

29

http://doxygen.invrs.org//classSystemCore.html
http://doxygen.invrs.org//classTransformationManager.html
http://doxygen.invrs.org//classTransformationData.html
http://doxygen.invrs.org//classTransformationManager.html
http://doxygen.invrs.org//classNavigation.html

Chapter 5 - Transformation Management 5.1. Height and Collision Maps

The other tool which is used are the collision maps. Collision maps are basically line sets that
are mapped on a plane. Figure 5.2 shows a mesh with a generated collision map. There are many
approaches to generate these maps. Tools for automatic creation have been developed but it is as
well possible to model the maps manually using tools like Blender or MAYA.

Figure 5.2: A Collision Map

5.1.1 Generating Collision Maps

The creation of collision maps is always performed offline. Two basic approaches exist for creating
the desired models. The first approach is to define the collision maps manually in a 3D modelling
tool like Blender. The Generation of the collision maps using this approach can be summarized
in the following steps:

• Step 1:
dump scene: start inVRs application and dump scene into file (e.g. in VRML file)

• Step 2:
open scene in 3D modeling tool (e.g. Blender1)

• Step 3:
hide unneeded objects for better overview (e.g. terrain, since there is no collision with it
needed)

• Step 4:
draw linesets in top view around objects where the collisions should occure (e.g. outer walls
of buildings)

• Step 5:
export line sets into VRML97 file

• Step 6:
enter the URL to the generated VRML file in the TransformationManager-configuration as
parameter for the CollisionMapModifier

Figure 5.3 illustrates the collision map generation in Blender.
Another approach is to generate the collision maps automatically. An algorithm for this approach
is described in [BLAV06].

1http://www.blender.org/

30

http://www.blender.org/

Chapter 5 - Transformation Management 5.2. Using Modifiers and Pipes

Figure 5.3: Generation of a Collision Map

5.1.2 Generating Height Maps

While the collision maps are always generated offline the height maps can follow a different
approach. This is the point where we are again back in the code. The HeightMapManager

has to be triggered in order to provide height maps to the system by invoking the method
HeightMapManager :: generateTileHeightMaps(). The generation of these maps follows of two
approaches.
First it is possible that such a height map has been previously generated, which is very convenient
since it takes less time loading it than generating it on the fly.
If such a height map is not available for a tile a dynamic generation of the map will be invoked.
The geometry of the pipe will be sampled and the results are stored in the height map.

HeightMapManager :: generateTileHeightMaps ();

Listing 5.1: CodeFile3.cpp - Snippet-3-1 → MedievalTown.cpp

5.2 Using Modifiers and Pipes

Now let’s get back to the transformation management. The TransformationManager consists of
several Pipes in which a variety of steps can be performed. Each pipe has a pre-defined amount
of stages, these stages are called modifiers and are implemented in the TransformationModifier

class. If an object (e.g. camera, entity) should be transformed via the manager a pipe between the
manager and the component responsible for the object is opened. The transformations are sent
by the source component to the transformation manager, where the pipe has been setup based on
a key. The key is composed by several attributes like source or object type.
If we want to integrate the modifiers into the application we have to configure them in the
modifiers.xml file which is used to set up the TransformationManager. In general we can
use one pipe per object. If the object is to be transformed the pipe on this object is opened.
The configuration of a transformation pipe including the setup of the modifiers is described in an
XML file. The modifier descriptions can become fairly complex so we are working now with a
really simple example.
The order of the modifiers is important because they will be executed in the order they are regis-
tered. The pipes are executed in the order they are defined as well.
The pipe definition contains information about, from where and to where the data is to be sent.

31

http://doxygen.invrs.org//classHeightMapManager.html
http://doxygen.invrs.org//classHeightMapManager.html
http://doxygen.invrs.org//classTransformationManager.html
http://doxygen.invrs.org//classPipe.html
http://doxygen.invrs.org//classTransformationModifier.html
http://doxygen.invrs.org//classTransformationManager.html

Chapter 5 - Transformation Management 5.2. Using Modifiers and Pipes

The srcComponentName and dstComponentName attributes of the Pipe describe the source and
target components of the pipe. If the fromNetwork attribute is set to 1 the source component
has remote location, meaning the transformations were received and are entered by the local Net-
work module. Let’s not worry about the other attributes; they are relevant for more advanced
applications.

<?xml version="1.0"?>

<!DOCTYPE transformationManager SYSTEM "http://dtd.inVRs.org/

transformationManager_v1 .0a4.dtd">

<transformationManager version="1.0a4">

<mergerList/>

<pipeList >

<pipe srcComponentName="NavigationModule"

dstComponentName="TransformationManager" pipeType="Any"

objectClass="Any" objectType="Any" objectId="Any"

fromNetwork="0">

<modifier type="ApplyNavigationModifier"/>

<!-- **************************** Snippet -3-1 ****************************** -->

<!-- **************************** Snippet -3-2 ****************************** -->

<!-- **************************** Snippet -5-3 ****************************** -->

<modifier type="UserTransformationWriter"/>

<modifier type="CameraTransformationWriter">

<!-- **************************** Snippet -3-3 ****************************** -->

</modifier >

<modifier type="AvatarTransformationWriter">

<arguments >

<arg key="clipRotationToYAxis" type="bool" value="true"/>

</arguments >

</modifier >

<!-- **************************** Snippet -4-4 ****************************** -->

</pipe>

<!-- **************************** Snippet -4-5 ****************************** -->

<!-- **************************** Snippet -5-4 ****************************** -->

<!-- **************************** Snippet -5-5 ****************************** -->

</pipeList >

</transformationManager >

Listing 5.2: modifiers.xml

So far only these modifiers were used:

• ApplyNavigationModifier

• UserTransformationWriter

• CameraTransformationWriter

• AvatarTransformationWriter

In our case we have used a single pipe for the navigation with a very basic set of modifiers.
The ApplyNavigationModifier inserts the results from the Navigation into the pipe. After-
wards the user transformation and the camera transformation are written via the two writers, the

32

http://doxygen.invrs.org//classApplyNavigationModifier.html
http://doxygen.invrs.org//classUserTransformationWriter.html
http://doxygen.invrs.org//classCameraTransformationWriter.html
http://doxygen.invrs.org//classAvatarTransformationWriter.html
http://doxygen.invrs.org//classApplyNavigationModifier.html
http://doxygen.invrs.org//classNavigation.html

Chapter 5 - Transformation Management 5.2. Using Modifiers and Pipes

UserTransformationWriter and the CameraTransformationWriter back to the User.
As a first step we have to add the HeightMapModifier into the pipe immediately after the
ApplyNavigationModifier inserts its transformation into the pipe. On the transformation which
has been received from the navigation module now an additional offset is applied. The height
component of the transformation is set to the height value of the height map. Afterwards user
and camera transformation are set

<modifier type="HeightMapModifier" />

Listing 5.3: Snippets3.xml - Snippet-3-1 → modifiers.xml

Each type of modifier can have its own specific configuration. To use the collision maps we include
the CheckCollisionModifier. Initially the radius based on the input transformation is checked.
If the distance between a line of the collision map and the input transformation is below the
defined radius the transformation form the previous pipe run is passed on in the pipe. To actually
store and load the line sets the VRML file format is used. The second parameter in our example
defines the file name of the file containing the collision map geometry.

<modifier type="CheckCollisionModifier">

<arguments >

<arg key="radius" type="float" value="1" />

<arg key="fileName" type="string" value="MedievalTownCollisionMap.wrl"/>

</arguments >

</modifier >

Listing 5.4: Snippets3.xml - Snippet-3-2 → modifiers.xml

We do not want to be hovering directly on the terrain. In order to move the camera from the actual
height value of the height map we do have to apply an offset by passing additional parameters to
the CameraTransformationWriter.

<arguments >

<arg key="cameraHeight" type="float" value="1.8"/>

<arg key="useGlobalYAxis" type="bool" value="true"/>

</arguments >

Listing 5.5: Snippets3.xml - Snippet-3-3 → modifiers.xml

After having set up our pipe and modifiers we should now come back to our C++ applica-
tion. This method registers the factories for the HeightMapModifiers as well as the ones for
the CheckCollisionModifiers at the TransformationManager. This is highly important since
these modifiers are not directly stored in the SystemCore but rather as external tools.
Although the TransformationManager was previously used no callback was needed since it did
not use any external components. This has changed now.

void initCoreComponents(CoreComponents comp) {

// register factory for HeightMapModifier as soon as the

// TransformationManager is initialized

if (comp == TRANSFORMATIONMANAGER) {

TransformationManager :: registerModifierFactory

(new HeightMapModifierFactory ());

// register factory for CheckCollisionModifier

TransformationManager :: registerModifierFactory

(new CheckCollisionModifierFactory);

}

}

Listing 5.6: CodeFile3.cpp - Snippet-3-2 → MedievalTown.cpp

33

http://doxygen.invrs.org//classUserTransformationWriter.html
http://doxygen.invrs.org//classCameraTransformationWriter.html
http://doxygen.invrs.org//classUser.html
http://doxygen.invrs.org//classHeightMapModifier.html
http://doxygen.invrs.org//classApplyNavigationModifier.html
http://doxygen.invrs.org//classCheckCollisionModifier.html
http://doxygen.invrs.org//classCameraTransformationWriter.html
http://doxygen.invrs.org//classHeightMapModifier.html
http://doxygen.invrs.org//classCheckCollisionModifier.html
http://doxygen.invrs.org//classTransformationManager.html
http://doxygen.invrs.org//classSystemCore.html
http://doxygen.invrs.org//classTransformationManager.html

Chapter 5 - Transformation Management 5.3. Summary

With this code snippet we register a callback on the initialization on the core components.

SystemCore :: registerCoreComponentInitCallback(initCoreComponents);

Listing 5.7: CodeFile3.cpp - Snippet-3-3 → MedievalTown.cpp

If we recompile and execute our application, assuming we have done everything right, we should
be able to move trough the medieval town. We can glide on the landscape and are not able to
enter buildings anymore. The screenshots in Figure 5.4 shows how it looks like standing on the
ground.

Figure 5.4: The medieval town under a blue sky

5.3 Summary

This chapter has introduced the basic concepts of collision maps and height maps in order to
implement terrain following. The flexibility of the transformation management has been illustrated
by the use of transformation modifiers and pipes.
Defining additional pipes and adding modifiers will become important in the subsequent chapters.
In the next step we will demonstrate the interaction handling.

34

Chapter 6

Interaction

This part of the tutorial makes use of a modified HOMER (Hand-centered Object Manipulation
Extending Ray-casting) [BH97] interaction technique in order to pick and rearrange objects in
the VE. Other interaction methodologies like virtual hand or GoGo [PBWI96] are implemented
and provided as out-of-the box features of the framework.
Interaction in inVRs is rather complex since many aspects are involved. Some examples are the
user, the virtual world, the transformation and event handling and if available the network. As a
special feature inVRs is designed for concurrent object manipulation, which will we explained in
a different tutorial.

6.1 State Machine

Again as with the navigation the interaction of the inVRs framework follows an unconventional
approach. Interaction is implemented as a state machine with the three different states idle,
selection, and manipulation. Figure 6.1 illustrates the state machine.

Figure 6.1: The Interaction State Machine

To switch between states transition functions are available. The states are implemented as simple
enum collection, the interesting thing are really the transition functions. The states are fixed but
the transition functions are designed to be exchanged with already existing or newly developed
ones. The following list gives an overview on what models are available to implement the transition
functions:

35

Chapter 6 - Interaction 6.1. State Machine

• SelectionActionModel

This model specifies how the user is notified of the selection of an entity for example by
highlighting it. Action models are executed as long as the user is in the appropriate state.

• ManipulationActionModel

As the SelectionActionModel this model defines what happens to the entity during manip-
ulation state.

• SelectionChangeModel

This model is responsible for the type of selection. If the model returns true the state changes
from q0 to q1.

• UnselectionChangeModel

In case this model returns true an entity becomes unselected again and the state is changed
back to idle.

• ManipulationConfirmationModel

This model becomes active when we are in the Selection state. It implements the transition
from selection into the manipulation state. One example for changing into the manipulation
state could be simply pressing a button.

• ManipulationTerminationModel

When this model returns true the transition from the manipulation into the idle state takes
place. A new selection process can begin.

The different models or transition functions can be individually set up and configured in the file
interaction.xml. This file is already prepared and does not have to be changed by you. We do
not want to go into the specifics of the models but be aware, that each transition function can
have its own model specific arguments.

<?xml version="1.0"?>

<!DOCTYPE interaction SYSTEM "http://dtd.inVRs.org/interaction_v1 .0a4.dtd">

<interaction version="1.0a4">

<stateActionModels >

<selectionActionModel type="HighlightSelectionActionModel">

<arguments >

<arg key="modelType" type="string" value="OSG"/>

<arg key="modelPath" type="string" value="box.osg"/>

</arguments >

</selectionActionModel >

<manipulationActionModel type="HomerManipulationActionModel">

<arguments >

<arg key="usePickingOffset" type="bool" value="true"/>

</arguments >

</manipulationActionModel >

</stateActionModels >

<stateTransitionModels >

<selectionChangeModel type="LimitRayCastSelectionChangeModel">

<arguments >

<arg key="rayDistanceThreshold" type="float" value="5"/>

</arguments >

</selectionChangeModel >

<unselectionChangeModel type="LimitRayCastSelectionChangeModel">

<arguments >

<arg key="rayDistanceThreshold" type="float" value="5"/>

</arguments >

</unselectionChangeModel >

<manipulationConfirmationModel type="ButtonPressManipulationChangeModel">

<arguments >

<arg key="buttonIndex" type="int" value="0"/>

36

http://doxygen.invrs.org//classSelectionActionModel.html
http://doxygen.invrs.org//classManipulationActionModel.html
http://doxygen.invrs.org//classSelectionChangeModel.html
http://doxygen.invrs.org//classUnselectionChangeModel.html
http://doxygen.invrs.org//classManipulationConfirmationModel.html
http://doxygen.invrs.org//classManipulationTerminationModel.html

Chapter 6 - Interaction 6.2. Implementing Interaction

</arguments >

</manipulationConfirmationModel >

<manipulationTerminationModel type="ButtonPressManipulationChangeModel">

<arguments >

<arg key="buttonIndex" type="int" value="0"/>

</arguments >

</manipulationTerminationModel >

</stateTransitionModels >

</interaction >

Listing 6.1: interaction.xml

When developing an interaction technique it is often common to implement a whole set of models
which work nicely in composition with each other. Although they are fully exchangeable a wild
combination does not make sense.

6.2 Implementing Interaction

Initially we have to make sure that the whole interaction setup is configured and registered prop-
erly. As a first step we provide the Configuration information where the interaction configuration
is stored. As usual we edit our main general.xml configuration file and insert the appropriate
path.

<path name="InteractionModuleConfiguration"

directory="config/modules/interaction/" />

Listing 6.2: Snippets4.xml - Snippet-4-1 → general.xml

Like with the Navigation we have to take care that the correct configuration file is loaded. The
filename for our interaction configuration which we have seen in the last section has to be provided
to the SystemCore.

<module name="Interaction" configFile="interaction.xml" />

Listing 6.3: Snippets4.xml - Snippet-4-2 → modules.xml

And again we have to register the module in an initial callback. We are then finished with our
basic module loading functionality.
This setting up might seem cumbersome, but it is straight forward and has the advantage that this
code can be reused in every application. The system core provides an additional helper class, which
hides a fair bit of these setting up the system configurations. For later application development it
might be interesting to take a look at the ApplicationBase.

// store the Interaction as soon as it is initialized

else if (module ->getName () == "Interaction") {

interaction = (Interaction *) module;

}

Listing 6.4: CodeFile4.cpp - Snippet-4-1 → MedievalTown.cpp

Now is the time to start with the interaction specific parts. Along with interaction techniques
it often happens that the cursor is transformed in a different way than with a usual virtual
hand technique thus we have to include as well a CursorTransformationModel which is to be
set in the user configuration file config/systemcore/userdatabase/userDatabase.xml. The
CursorTransformationModel describes the behavior of the users cursor during the interaction

37

http://doxygen.invrs.org//classConfiguration.html
http://doxygen.invrs.org//classNavigation.html
http://doxygen.invrs.org//classSystemCore.html
http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classCursorTransformationModel.html
http://doxygen.invrs.org//classCursorTransformationModel.html

Chapter 6 - Interaction 6.2. Implementing Interaction

process.
As an example, when we use tracked input devices and a virtual hand interaction technique
the position and orientation of the input device is directly mapped on position and orientation
of the cursor. In our case with the HOMER technique and the HomerCursorModel, the cursor
moves towards the object when the transition from selection to manipulation takes place. If the
manipulation state is left again the cursor moves back to the user.
Additionally to the CursorTransformationModel we also have to load a representation for the
cursor so that it is rendered. This representation is defined in the configuration file entered in the
cursorRepresentation element. As a visual representation of the cursor we have chosen a hand
since it fits to our given scenario. A pointer or a plane might be more helpful for example for
visualizations.

<cursorRepresentation configFile="handRepresentation.xml" />

<cursorTransformationModel configFile="homerCursorModel.xml" />

Listing 6.5: Snippets4.xml - Snippet-4-3 → userDatabase.xml

The definition of our CursorTransformationModel which stored inside the configuration file
homerCursorModel.xml describes the speed of the cursor movement. The additional attributes
forwardThreshold and backwardThreshold describe values which are relevant for collision detec-
tion with the object, don’t worry about them now. No changes have to be applied here since it
is considered a standard configuration file. Other configurations are provided for the GoGo and
virtual hand interaction techniques.

<?xml version="1.0"?>

<!DOCTYPE cursorTransformationModel SYSTEM "http://dtd.inVRs.org/

cursorTransformationModel_v1 .0a4.dtd">

<cursorTransformationModel version="1.0a4">

<model name="HomerCursorModel">

<arguments >

<arg key="animationSpeed" type="float" value="12"/>

<arg key="forwardThreshold" type="float" value="0.1"/>

<arg key="backwardThreshold" type="float" value="0.1"/>

</arguments >

</model>

</cursorTransformationModel >

Listing 6.6: homerCursorModel.xml

Since we are using a cursor now we have to add the appropriate modifiers in the navigation pipe
of the TransformationManager. The cursor position in three-dimensional space of course changes
with the camera position, thus these modifiers are necessary. Once the user has moved in the VE
the cursor relative to the users position is taken into account and an updated transformation is
written back.

<modifier type="ApplyCursorTransformationModifier" />

<modifier type="CursorTransformationWriter" />

Listing 6.7: Snippets4.xml - Snippet-4-4 → modifiers.xml

To finally use the interaction with our entities one new pipe is needed which maps the transfor-
mations generated in the manipulation state on the Entity which is being manipulated. In order
to provide this mapping we have to open again our modifier.xml file and insert the following
snippet. The pipe takes Interaction as a source and writes the TranformationData on the
WorldDatabase. This should be valid for all types of relevant objects.
Lets have a brief look at the modifiers we use in our interaction pipe. The first modifier in the

38

http://doxygen.invrs.org//classHomerCursorModel.html
http://doxygen.invrs.org//classCursorTransformationModel.html
http://doxygen.invrs.org//classCursorTransformationModel.html
http://doxygen.invrs.org//classTransformationManager.html
http://doxygen.invrs.org//classInteraction.html
http://doxygen.invrs.org//classTranformationData.html
http://doxygen.invrs.org//classWorldDatabase.html

Chapter 6 - Interaction 6.2. Implementing Interaction

pipe, the ManipulationOffsetModifier, is used for applying an additional picking offset. When
we pick the object we the cursor moves to the center of the object. To avoid this behavior we use
the offset provided by the modifier.
The second modifier in the pipe the EntityTransformationWriter is used to finally write the
transformation of the manipulated entity in the WorldDatabase.

<pipe srcComponentName="InteractionModule" dstComponentName="WorldDatabase"

pipeType="Any" objectClass="Any" objectType="Any" objectId="Any"

fromNetwork="0">

<modifier type="ManipulationOffsetModifier"/>

<modifier type="TransformationDistributionModifier"/>

<modifier type="EntityTransformationWriter" />

</pipe>

Listing 6.8: Snippets4.xml - Snippet-4-5 → modifiers.xml

So far this is was the setup of the transition functions, the general integration of the interaction
module and the settings for the cursor transformation as well as the modifier configuration of the
transformation management. There is basically one more thing to do.
When we want to select objects during interaction it is often helpful to have a representation of
the cursor. We have to set again the path for the configuration of the CursorRepresentation and
the CursorTransformationModel in the general.xml configuration file.

<path name="CursorRepresentationConfiguration"

directory="config/systemcore/userdatabase/cursorRepresentation/" />

<path name="CursorTransformationModelConfiguration"

directory="config/systemcore/userdatabase/cursorTransformationModel/" />

Listing 6.9: Snippets4.xml - Snippet-4-6 → general.xml

The interaction processing has to be invoked by calling the step method. During this step the
transition functions are checked and updated.
Besides the interaction updates also the CursorRepresentations have to be updated. This is needed
in order to allow the representations to change their look depending on the current state of the
Interaction module. In our example the cursor changes its look when an entity is grabbed to a
closed hand while it is visualized as opened hand during idle and selection state.

interaction ->update(dt);

UserDatabase :: updateCursors(dt);

Listing 6.10: CodeFile4.cpp - Snippet-4-2 → MedievalTown.cpp

When we recompile now and execute our medieval town application we should be able to pick up
and drop the benches, boxes and marble balls of the VE by pressing the left mouse button. By
pointing at objects with the hand representation visual feedback should be provided in form of a
flashing box around the object. This is for example implemented in the SelectionActionModel

and can be configured in the setup of the interaction.
If we release these objects they unfortunately get stuck in the air, since we do not make use of
gravity. Pictures of that are provided in Figure 6.2 To overcome the problem we could create
an additional modifier implementing the dropping, include the HeightMapModifier to transform
them directly on the terrain height or alternatively we could make use of the physics module,
which will be explained in another tutorial.

39

http://doxygen.invrs.org//classManipulationOffsetModifier.html
http://doxygen.invrs.org//classEntityTransformationWriter.html
http://doxygen.invrs.org//classWorldDatabase.html
http://doxygen.invrs.org//classCursorTransformationModel.html
http://doxygen.invrs.org//classInteraction.html
http://doxygen.invrs.org//classSelectionActionModel.html
http://doxygen.invrs.org//classHeightMapModifier.html

Chapter 6 - Interaction 6.3. Events

Figure 6.2: Interacting with Entities

6.3 Events

In general it is worth mentioning that the Interaction makes use of the SystemCores internal
event system the EventManager. State changes of the automaton are for example propagated
throughout the system, most of them are automatically distributed via the network in case this
module is present as well. Understanding in the inVRs Events is not relevant for the tutorial, but
it is a must look-up if you want to develop your own interaction techniques.

6.4 Summary

This chapter has given a brief overview on the interaction concept of the inVRs framework. A
state machine was configured with a set of transition functions in order to implement a modified
HOMER technique. A cursor transformation model was introduced to move a representation of
the cursor to the entity which should be manipulated. Additionally a new pipe was specified to
implement object manipulation. The users are able to pick up entities like boxes or benches in
the VE.
In the next chapter we will try to interact with several users in a shared VE. All participants
should then be able to observe navigating and interacting users.

40

http://doxygen.invrs.org//classInteraction.html
http://doxygen.invrs.org//classSystemCore.html
http://doxygen.invrs.org//classEventManager.html
http://doxygen.invrs.org//classEvent.html

Chapter 7

Using Network Communication

Multi-user environments can be more exciting than simple single user applications. And why
would you need a whole town if you only have one inhabitant. In the following the Network

module is introduced which will allow us to share a virtual world. Navigation and interaction will
be distributed.

7.1 Concepts

Many approaches for developing large scale networked virtual environments exist. An ideal solu-
tion is impossible to find since special aspects like consistency and response time are ambivalent.
Therefore many implementations of this module exist using an internal NetworkInterface be-
tween the core and the module to keep the exchangeability.
Early drafts of the Network module included zoning mechanism to distribute the virtual world
over several servers [AHHV05, AHHV04, AHV04]. An example for the exchangeability of the
inVRs network module was demonstrated when an inVRs application was ported to use GRID
infrastructures [ALBV08].
The inVRs Network module is the most likely module to be completely user-implemented. Many
different requirements like scalability or response times are often completely application specific.
As long as the developer of the network module sticks to the interface to the modules and the core
basically any communication and data distribution topology can be implemented.
The default implementation of the module can be considered robust and straight forward. It used
replicated databases and one-to-all communication mechanisms.

7.2 Setting up the Network Communication

Let’s start with our usual module setup and add the path of the network module configuration
file in the general.xml configuration.

<path name="NetworkModuleConfiguration"

directory="config/modules/network/" />

Listing 7.1: Snippets5.xml - Snippet-5-1 → modules.xml

And again we have to set the filename of the configuration and define the name of the library in
order to load it dynamically.

<module name="Network" configFile="network.xml" />

Listing 7.2: Snippets5.xml - Snippet-5-2 → modules.xml

41

http://doxygen.invrs.org//classNetwork.html
http://doxygen.invrs.org//classNetworkInterface.html
http://doxygen.invrs.org//classNetwork.html

Chapter 7 - Using Network Communication 7.3. Transmitting Data

Of course we have to register again a callback for supporting the plugin mechanism of the frame-
work.

// store the NetworkInterface as soon as it is initialized

else if (module ->getName () == "Network") {

network = (NetworkInterface *) module;

}

Listing 7.3: CodeFile5.cpp - Snippet-5-1 → MedievalTown.cpp

Now we can start with integrating our network code and setting the network specific configurations.
The first code snippet is used for connection establishment. The command line parameter which
should an IP address or a hostname is the machine to connect to. Additionally we have to specify
the port to connect to, separated from the port by a colon.
The NetworkInterface :: connect() method tries to establish a connection to the passed address.
Afterwards we have to call the synchronize method of the system core in order to update the
databases.

// try to connect to network first command line argument is {hostname|IP}:port

if (argc > 1) {

printf("Trying to connect to %s\n", argv [1]);

network ->connect(argv [1]);

}

SystemCore :: synchronize (); // synchronize both VEs

Listing 7.4: CodeFile5.cpp - Snippet-5-2 → MedievalTown.cpp

The SystemCore has to be triggered at the beginning of the display loop in order to process the
event handling.

SystemCore ::step(); // update the system core , needed for event handling

Listing 7.5: CodeFile5.cpp - Snippet-5-3 → MedievalTown.cpp

The ports for UDP and TCP communication are set. The basic implementation of the network
module transmits Events via TCP and TransformationData via UDP. User defined messages can
be distributed as well with additional methods.

<?xml version="1.0"?>

<!DOCTYPE network SYSTEM "http://dtd.inVRs.org/network_v1 .0a4.dtd">

<network version="1.0a4">

<ports TCP="8081" UDP="8082"/>

</network >

Listing 7.6: network.xml

7.3 Transmitting Data

Besides the specific synchronization and connection establishment data, inVRs transmits Events
and TransformationData.
The EventManager automatically detects whether the network module is present, if this is the
case, the events are distributed to the remote participant, unless specified differently.

42

http://doxygen.invrs.org//classNetworkInterface.html
http://doxygen.invrs.org//classSystemCore.html
http://doxygen.invrs.org//classEvent.html
http://doxygen.invrs.org//classTransformationData.html
http://doxygen.invrs.org//classEvent.html
http://doxygen.invrs.org//classTransformationData.html
http://doxygen.invrs.org//classEventManager.html

Chapter 7 - Using Network Communication 7.4. Displaying Avatars

The data of the TransformationManager has to be sent in a different way. In order to trans-
mit the transformations the TransformationDistributionModifier has to be included in the
modifiers.xml file. In our case this has to happen at two areas in the configuration, once for the
Navigation and once for the Interaction.

<modifier type="TransformationDistributionModifier" />

Listing 7.7: Snippets5.xml - Snippet-5-3 → modifiers.xml

Two additional pipes have to be created in order to react on remote transformations coming in.
The WorldDatabase has to write the transformations of the remote Interaction modules as well.
Otherwise we would have a slightly inconsistent and rather static shared VE. In this snippet the
attribute fromNetwork is set to 1. meaning the data has to be sent from the Network module to
the TransformationManager.

<pipe srcComponentName="InteractionModule" dstComponentName="WorldDatabase"

pipeType="Any" objectClass="Any" objectType="Any" objectId="Any"

fromNetwork="1">

<modifier type="EntityTransformationWriter" />

</pipe>

Listing 7.8: Snippets5.xml - Snippet-5-4 → modifiers.xml

Of course the transformation of the remote users has to be transmitted as well. Thus an additional
pipe has to be specified in order to represent any remote users.

<pipe srcComponentName="NavigationModule" dstComponentName="

TransformationManager"

pipeType="Any" objectClass="Any" objectType="Any" objectId="Any"

fromNetwork="1">

<modifier type="UserTransformationWriter" />

<modifier type="AvatarTransformationWriter" >

<arguments >

<arg key="clipRotationToYAxis" type="bool" value="true" />

</arguments >

</modifier >

</pipe>

Listing 7.9: Snippets5.xml - Snippet-5-5 → modifiers.xml

By having the transformation and event distribution decoupled from the navigation and the inter-
action, it is easily possible to use different interaction and navigation techniques on the intercon-
nected sites. This can for example become important if CAVE users like to interact with desktop
users in the same NVE.

7.4 Displaying Avatars

Now you can recompile and try to connect to the IP address of your neighbor. You should see
your remote partner now since their avatars have been previously set in the UserDatabase they
are configured via an intuitive XML description in the file config/systemcore/userdatabase/

avatar/avatar.xml.
More complex avatars are provided by inVRs as well as an additional tool. It is possible to set
animation cycles on the or move specific parts of their bodies, which becomes interesting when
tracking systems are used with inVRs.

43

http://doxygen.invrs.org//classTransformationManager.html
http://doxygen.invrs.org//classTransformationDistributionModifier.html
http://doxygen.invrs.org//classNavigation.html
http://doxygen.invrs.org//classInteraction.html
http://doxygen.invrs.org//classWorldDatabase.html
http://doxygen.invrs.org//classInteraction.html
http://doxygen.invrs.org//classNetwork.html
http://doxygen.invrs.org//classTransformationManager.html
http://doxygen.invrs.org//classUserDatabase.html

Chapter 7 - Using Network Communication 7.5. Execution

<?xml version="1.0"?>

<!DOCTYPE simpleAvatar SYSTEM "http: //dtd.inVRs.org/simpleAvatar_v1 .0a4.dtd">

<simpleAvatar version="1.0a4">

<name value="MedievalCitizen"/>

<representation >

<file type="VRML" name="undead.wrl"/>

<transformation >

<translation x="0" y="0" z="0"/>

<rotation x="0" y="1" z="0" angleDeg="180"/>

<scale x="0.08" y="0.08" z="0.08"/>

</transformation >

</representation >

</simpleAvatar >

Listing 7.10: avatar.xml

We have now completed the network chapter. Since the transformations are distributed the move-
ment of the avatars should be visible as well as the interaction they perform.

7.5 Execution

For testing the application over the network first start an instance of the tutorial on one machine
using the startTutorial-script. As soon as the application is running you can connect from
another machine to the running application by passing the hostname or ip-address and the tcp-
port to the start-script separated by a colon, e.g.:

./startTutorial.sh 192.168.0.100:8081

NOTE: if you want to start multiple application instances on the same machine you will have
to use different TCP and UDP ports. Therefore you will have to use a separate network.xml

configuration file for every instance.
Figure 7.1 shows two users in one virtual environment. The small pictures display the view of the
user interacting with an entity and the big ones show what an observing user sees.

Figure 7.1: Interacting in a networked virtual environment

7.6 Summary

We should now be able to share the same virtual world with other participants. Most of the
data distribution is hidden fully from the application developer. The distribution mechanism with
the help of the EventManager and the TransformationManager hide the details from application

44

http://doxygen.invrs.org//classEventManager.html
http://doxygen.invrs.org//classTransformationManager.html

Chapter 7 - Using Network Communication 7.6. Summary

development. If you have written a single user VE with the help of inVRs it should be fairly
straight forward to port it into the domain of NVEs.

45

Chapter 8

Developing own Application Logic

One of the main advantages which inVRs provides compared to other systems in the field is the
full flexibility given to the application developer which will be illustrated in the following.
In this example we are going to rotate the sails of the windmill by writing our own animation code.
To achieve this we have to gather input for starting and stopping the animation. Additionally we
have to transform the received input into the rotating behavior of the windmill. This access on
the windmill sails has to happen on a lower level than maybe expected.

8.1 Input and Animations

When we take a look at the following snippet, we can basically identify two sections in the code.
The first one is processing the input at the top part of the snippet and the second one at the
bottom is used for implementing the animation and writing it back to the entity.
To implement our animation, we evaluate the right mouse button, which is mapped internally as a
button of our Controller object which carries the id 2 as defined in the file config/interfaces/

controllermanager/MouseKeybController.xml. If this button is pressed the variable windMill-
Speed, describing the rotational speed of the sails, will be increased based on the time difference
between the last measurements. In case the windMillSpeed raises above a defined threshold (2π),
the speed will be limited to the threshold. If we release the button the speed is decremented until
it reaches the lower threshold of 0.

if (controller ->getButtonValue (2)) { // the right mouse button is pressed

windMillSpeed += dt*0.5; // increase speed of the windmill

if (windMillSpeed > 2*M_PI) {

windMillSpeed = 2*M_PI;

}

} else if (windMillSpeed > 0) { // pressing mouse button stopped

windMillSpeed -= dt *0.5; // decrease speed of windmill

} else if (windMillSpeed < 0) {

windMillSpeed = 0;

}

Listing 8.1: CodeFile6.cpp - Snippet-6-1 - Top Part → MedievalTown.cpp

The bottom section of the snippet is used for finally implementing the animation. If the rotational
speed is above 0 the sails are to be animated. At first we have to request the Entity of the from our
WorldDatabase by calling the WorldDatabase :: getEntityWithEnvironmentId() function which
takes two parameters. The first one is the id of the Environment the Entity is in, the second
one is the id of the Entity which was specified was previously specified in environment.xml. In
general other possibilities to look up entity, as for example by name are possible as well.
We don’t want to operate on an entity basis because we do not want to rotate the whole windmill.

46

http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classEntity.html
http://doxygen.invrs.org//classWorldDatabase.html
http://doxygen.invrs.org//classWorldDatabase.html
http://doxygen.invrs.org//classEnvironment.html
http://doxygen.invrs.org//classEntity.html
http://doxygen.invrs.org//classEntity.html

Chapter 8 - Developing own Application Logic 8.1. Input and Animations

As a result we will have to dig lower in the entity and access it on a scene graph level. Thus
we create a ModelInterface and retrieve the sub scene graph from the model which is stored
in our our entity by grabbing its to scene graph node. We now have to make sure that it is a
transformation node and cast it as TransformationSceneGraphNodeInterface.
Now it is time to update the TransformationData of the windmill sails. We have to use a
bit of the math function provided by the GMTL. Let’s first create a quaternion 1 based on its
AxisAngle attribute. As an axis we simply set the z-axis, since this is the one we want to rotate
the sails around. The angle is based on the windMillSpeed variable which was previously set in
the interaction part of the code snippet.
After having calculated the current rotation change based on the speed and the time passed we
have to multiply it with the already present rotation of the sails. Watch out we are working in
this case with TransformationData not with matrices, so we are only changing the orientation
attribute of the transformation data and not the translation or scale attributes. Finally the newly
calculated transformation has to replace the current transformation in the transformation node
via the TransformationSceneGraphNodeInterface :: setTransformation() method.

if (windMillSpeed > 0) { // rotate sails

// retrieve the windmill entity

Entity* windMill = WorldDatabase :: getEntityWithEnvironmentId (1, 27);

ModelInterface* windMillModel = windMill ->getVisualRepresentation ();

// retrieve the windmill ’s sails

SceneGraphNodeInterface* sceneGraphNode =

windMillModel ->getSubNodeByName("Sails");

// make sure this node is a transformation node

assert(sceneGraphNode ->getNodeType () ==

SceneGraphNodeInterface :: TRANSFORMATION_NODE);

TransformationSceneGraphNodeInterface* transNode =

dynamic_cast <TransformationSceneGraphNodeInterface *>(sceneGraphNode);

assert(transNode);

// rotate the sails

TransformationData trans = transNode ->getTransformation ();

gmtl:: AxisAnglef axisAngle(windMillSpeed*dt , 0, 0, 1);

gmtl:: Quatf rotation;

gmtl::set(rotation , axisAngle);

trans.orientation *= rotation;

transNode ->setTransformation(trans);

}

Listing 8.2: CodeFile6.cpp - Snippet-6-1 - Bottom Part → MedievalTown.cpp

Now we should recompile and execute the application again. If we keep the right mouse button
pressed the wheel of the windmill is going to start rotating, when we release it again it will slow
down till it stops. This is shown in Figure 8.1 Of course this was just a simple example but
illustrates quite well how flexible the approach is.
An different option for creating the animation could have been an implementation making use of
the TransformationManager. In such a case it would have been easily possible to distribute the
rotation via modifier, to the other participants. Since we have not made use of the distribution
mechanisms, we will only have local changes in our NVE.

1Quaternions are often used to describe rotations, basically they have an axis and an angle to rotate around the
axis. If you want to understand them in detail have a look at Shoemakes’ paper [Sho85]

47

http://doxygen.invrs.org//classModelInterface.html
http://doxygen.invrs.org//classTransformationSceneGraphNodeInterface.html
http://doxygen.invrs.org//classTransformationData.html
http://doxygen.invrs.org//classTransformationData.html
http://doxygen.invrs.org//classTransformationSceneGraphNodeInterface.html
http://doxygen.invrs.org//classTransformationManager.html

Chapter 8 - Developing own Application Logic 8.2. Summary

Figure 8.1: A spinning windmill wheel

8.2 Summary

We are now finished with the tutorial and have learned in this chapter how to develop own
application logic. Input from the controller was polled and evaluated to generate a speed value.
Afterwards an entity was requested from the world database and accessed on a lower level in order
to manipulate its sub scene graph.
In overall we already created a powerful application compared to the code which had to be written.
There is much much more what you can do with inVRs and some additional features and tools
will be explained in the final chapter.
Well, the next step would be porting this tutorial on a stereoscopic 2 system with tracked input
devices. You are way not as far away from this as you might think.
By integrating the CAVESceneManager and configuring it as well as your devices, you will still
have to recompile, but you will only have to change a small amount of code. The main work
is in that case setting up the display which uses a similar definition like the CAVELib, where
configuration might be available already.

2maybe even a multi-display system like a CAVE

48

Chapter 9

Wrapping Functionality

In general it is possible to develop an inVRs application as described in the first tutorial – the
Medieval Town Tutorial. Much of the code developed in that tutorial is generic and is already
available in a so called ApplicationBase which is part of the inVRs SystemCore. The applica-
tion developer can derive from this class to spare the implementation of the generic code parts.
Besides the general existing ApplicationBase also a scene graph specific implementation the
OpenSGApplicationBase is available as an additional tool. This class will be used in this tutorial
as a basis.

9.1 Using the ApplicationBase

Before we will start with the tutorial let’s have a look at the generic ApplicationBase class.
The key functions which are already provided in the ApplicationBase class are described in the
following:

• virtual bool preInit(const CommandLineArgumentWrapper& args)

This method is called before the initialization of the application base. It is the first method
called in an inVRs application after the constructors are executed. The application developer
can overwrite this method to insert code which has to be executed before all other parts of
the application.

• virtual void initCoreComponentCallback(CoreComponents comp)

This method is called by the SystemCore when the components of this class are initialized.
It can be overwritten by the application developer to get notifications before each component
is initialized.

• virtual void initInputInterfaceCallback(ModuleInterface* moduleInterface)

This method is called by the InputInterface when the modules of this class are initialized.
It can be overwritten by the application developer to get notifications before each module
of the InputInterface is initialized.

• virtual void initOutputInterfaceCallback(ModuleInterface* moduleInterface)

This method is called by the OutputInterface when the modules of this class are initialized.
It can be overwritten by the application developer to get notifications before each module
of the OutputInterface is initialized.

• virtual void initModuleCallback(ModuleInterface* module)

This method is called by the SystemCore when the general modules are initialized. It can be
overwritten by the application developer to get notifications before each module is initialized.

49

http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html
http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classSystemCore.html
http://doxygen.invrs.org//classInputInterface.html
http://doxygen.invrs.org//classInputInterface.html
http://doxygen.invrs.org//classOutputInterface.html
http://doxygen.invrs.org//classOutputInterface.html
http://doxygen.invrs.org//classSystemCore.html

Chapter 9 - Wrapping Functionality 9.1. Using the ApplicationBase

• virtual bool disableAutomaticModuleUpdate()

This method can be overwritten by the application developer if the updates of the different
modules should be done manually in the application. By default the update of all registered
modules is done automatically by the ApplicationBase class. If this class is overwritten
and it returns true then the automatic module update is omitted and the virtual method
manualModuleUpdate() is called instead (see next line).

• virtual void manualModuleUpdate(float dt)

This method is called automatically when the disableAutomaticModuleUpdate() method
described above was overwritten accordingly. The default implementation of this method in
the ApplicationBase class does nothing, so ensure to overwrite this method if you want to
do the module updates manually.

Other functions have to be implemented by the application developer:

• virtual std::string getConfigFile(const CommandLineArgumentWrapper& args)

The main configuration file has to be passed to inVRs. It is typically loaded from a fixed
path or passed as a command line argument.

• virtual bool init(const CommandLineArgumentWrapper& args)

The method is called after the initialization of all inVRs components, interfaces and modules.
It is intended to be used by the application developer for the initialization of the main
application.

• virtual void run()

This method is called by inVRs after all initialization steps were finished and the runnable
components like the EventManager and the Network module were started. In this method
the application developer should implement the main application loop. The implemented
main loop has to call the ApplicationBase :: globalUpdate() method every loop iteration
in order to update the inVRs components.

• virtual void display(float dt)

This method is called by the ApplicationBase :: globalUpdate() method in order to update
the main application. The application developer should prefer this method for updates
compared to the implementation in the main loop because some important inVRs updates
like the Controller or the TransformationManager were executed before this method is
called.

• virtual void cleanup()

This method should be implemented in order to clean up the application. It is called by the
ApplicationBase :: globalCleanup() method.

Other methods which have to be called by the application developer:

• bool start(int argc, char** argv)

This method starts the application. It should be called out of the main method after an
instance of the application object was created.

• void globalUpdate()

The method updates the inVRs components and forwards the update-command to the in-
herited display method. It must be called out of the application main loop.

50

http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classEventManager.html
http://doxygen.invrs.org//classNetwork.html
http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classTransformationManager.html
http://doxygen.invrs.org//classApplicationBase.html

Chapter 9 - Wrapping Functionality 9.2. Using the OpenSGApplicationBase

• void globalCleanup()

The method cleans up the inVRs components. It must be called by the application be-
fore finishing. This method automatically forwards the command to the inherited cleanup

method with which the user can clean up the main application.

Besides the provided methods several member variables can be used when inheriting from the
ApplicationBase:

• SceneGraphInterface* sceneGraphInterface

This member variable points to the used SceneGraphInterface. If no SceneGraphInterface is
used the pointer value is NULL.

• ControllerManagerInterface* controllerManager

This member variable is a pointer to the ControllerManager. If no ControllerManager is
used the pointer value is NULL.

• NetworkInterface* networkModule

This member variable points to the Network module. If no Network module is loaded the
pointer value is NULL.

• NavigationInterface* navigationModule

This member variable points to the Navigation module. If no Navigation module is loaded
the pointer points to NULL.

• InteractionInterface* interactionModule

This member variable points to the Interaction module. If no Interaction module is loaded
the pointer points to NULL.

• User* localUser

This variable points to the User object for the local user.

• CameraTransformation* activeCamera

This variable is a pointer to the camera transformation object of the local camera.

Using the ApplicationBase class allows for developing applications without having to care about
the main inVRs components. Although this reduces the lines of code which have to be written
there is still much to implement, e.g. for the window management, or the display methods for
rendering the scene.

9.2 Using the OpenSGApplicationBase

To further simplify the application development the OpenSGApplicationBase was developed. This
class is inherited from the basic ApplicationBase class and implements additional functionality
for window management, rendering and input device support. In this helper class the decision
whether immersive displays with the help of the CAVE Scene Manager are used for output or a
simple GLUT window is used is taken.
The key functions which are already provided in the OpenSGApplicationBase or it’s derived
classes are described in the following:

• virtual bool preInitialize(const CommandLineArgumentWrapper& args)

This method is called before the initialization of the application base. It is the first method
called in an inVRs application right after OpenSG was initialized (via osgInit()). The
application developer can overwrite this method to insert code which has to be executed
before all other parts of the application. NOTE: Take care to not confuse this method
with the ApplicationBase :: preInit() method, since this one is implemented by the
OpenSGApplicationBase and must NOT be overwritten!

51

http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html
http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html
http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html

Chapter 9 - Wrapping Functionality 9.2. Using the OpenSGApplicationBase

• virtual void initCoreComponentCallback(CoreComponents comp)

This method is called by the SystemCore when the components of this class are initialized.
It can be overwritten by the application developer to get notifications before each component
is initialized.

• virtual void initInputInterfaceCallback(ModuleInterface* moduleInterface)

This method is called by the InputInterface when the modules of this class are initialized.
It can be overwritten by the application developer to get notifications before each module
of the InputInterface is initialized.

• virtual void initOutputInterfaceCallback(ModuleInterface* moduleInterface)

This method is called by the OutputInterface when the modules of this class are initialized.
It can be overwritten by the application developer to get notifications before each module
of the OutputInterface is initialized.

• virtual void initModuleCallback(ModuleInterface* module)

This method is called by the SystemCore when the general modules are initialized. It can be
overwritten by the application developer to get notifications before each module is initialized.

• virtual void cbGlutSetWindowSize(int w, int h)

This method is called whenever the size of the window is changed. The application developer
can overwrite this functions if this information is needed by the application.

• virtual void cbGlutMouse(int button, int state, int x, int y)

This method is called whenever a mouse button is pressed inside the application window. It
can be overwritten to get notifications for mouse button presses. Note that it is recommended
to get this information via the inVRs ControllerManager using the GlutMouseDevice in-
stead!

• virtual void cbGlutMouseMove(int x, int y)

This method is called whenever the mouse cursor is moved over the application window. It
can be overwritten to get notifications for mouse motion. Note that it is recommended to get
this information via the inVRs ControllerManager using the GlutMouseDevice instead!

• virtual void cbGlutKeyboard(unsigned char k, int x, int y)

This method is called whenever a keyboard key is pressed. It can be overwritten to get
notifications for keyboard input. Note that it is recommended to get this information via
the inVRs ControllerManager using the GlutKeyboardDevice class.

• virtual void cbGlutKeyboardUp(unsigned char k, int x, int y)

This method is called whenever a keyboard key is released. It can be overwritten to get
notifications for keyboard input. Note that it is recommended to get this information via
the inVRs ControllerManager using the GlutKeyboardDevice class.

Other functions have to be implemented by the application developer:

• virtual std::string getConfigFile(const CommandLineArgumentWrapper& args)

This method must return the url to the main configuration file (usually called general.xml).
This file is needed by inVRs in order to load and configure the core components, interfaces
and modules. If the url to the configuration file should be passed via command line then
this value can be obtained from the CommandLineArgumentWrapper parameter.

52

http://doxygen.invrs.org//classSystemCore.html
http://doxygen.invrs.org//classInputInterface.html
http://doxygen.invrs.org//classInputInterface.html
http://doxygen.invrs.org//classOutputInterface.html
http://doxygen.invrs.org//classOutputInterface.html
http://doxygen.invrs.org//classSystemCore.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classGlutMouseDevice.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classGlutMouseDevice.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classGlutKeyboardDevice.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classGlutKeyboardDevice.html
http://doxygen.invrs.org//classCommandLineArgumentWrapper.html

Chapter 9 - Wrapping Functionality 9.2. Using the OpenSGApplicationBase

• virtual bool initialize(const CommandLineArgumentWrapper& args)

This method can be used in order to initialize the application. The method is called after
the inVRs components (core, interfaces and modules) were initialized. The parameter of
type CommandLineArgumentWrapper can be used to read options passed via the command
line.

• virtual void display(float dt)

This method is called every application loop cycle and can be used to update the application.
The parameter dt contains the elapsed time in milliseconds since the previous method call.

• virtual void cleanup()

The method should be used in order to cleanup the application. It is called right before the
application is terminated.

Other methods which must be called by the application developer:

• void setRootNode(NodePtr root)

In this method the root node of the scene graph is set in the used SceneManager. Depending
on the configuration this is either the SimpleSceneManager or the CAVESceneManager.

Other methods which can be called by the application developer:

• void setPhysicalToWorldScale(float scale)

This method is important when writing applications for VR installations like a CAVE. By
calling this method you can set the scale-factor from the physical units provided by your
tracking system to the world units used in the application. For example if your tracking
systems provides centimeter values and your application is modeled in meters then you
should pass 0.01 to this method. Don’t forget to call this method when using tracking
systems in order to provide a correct visualization.

• void setNearClippingPlane(float nearPlane)

This method allows to set the near clipping plane of your application.

• void setFarClippingPlane(float farPlane)

The method allows to set the far clipping plane of your application.

• void setStatistics(bool onOff)

This method activates or deactivates the display of the SceneManager specific statistics.

• void setWireframe(bool onOff)

This method allows to switch between normal and wireframe rendering.

• void setHeadlight(bool onOff)

By calling this method the headlight (default light used in OpenSG) can be activated or
deactivated.

• bool setBackgroundImage(std::string imageUrl, int windowIndex = -1)

This method sets the background image for the windows with the passed index. When no
window index is passed the image is used as background for all active windows. NOTE: Us-
ing an image background in OpenSG may reduce the overall performance of your application.
Avoid using this method or only use it with low resolution images!

• void setEyeSeparation(float eyeSeparation)

This method allows to set the eye separation when using the CAVESceneManager for output.

53

http://doxygen.invrs.org//classCommandLineArgumentWrapper.html
http://www.opensg.org/doc-1.6.0//classosg_1_1SimpleSceneManager.html
http://doxygen.invrs.org//classCAVESceneManager.html
http://doxygen.invrs.org//classCAVESceneManager.html

Chapter 9 - Wrapping Functionality 9.3. Initial Tutorial Application

• float getEyeSeparation()

The method returns the current eye separation.

Besides the already provided methods several member variables which are inherited from the class
ApplicationBase can be used:

• SceneGraphInterface* sceneGraphInterface

This member variable points to the used SceneGraphInterface. If no SceneGraphInterface is
used the pointer value is NULL.

• ControllerManagerInterface* controllerManager

This member variable is a pointer to the ControllerManager. If no ControllerManager is
used the pointer value is NULL.

• NetworkInterface* networkModule

This member variable points to the Network module. If no Network module is loaded the
pointer value is NULL.

• NavigationInterface* navigationModule

This member variable points to the Navigation module. If no Navigation module is loaded
the pointer points to NULL.

• InteractionInterface* interactionModule

This member variable points to the Interaction module. If no Interaction module is loaded
the pointer points to NULL.

• User* localUser

This variable points to the User object for the local user.

• User* localUser

This variable points to the User object for the local user.

• CameraTransformation* activeCamera

This variable is a pointer to the camera transformation object of the local camera.

In order to write your own inVRs application using OpenSG your application should inherit from
the OpenSGApplicationBase.

9.3 Initial Tutorial Application

The first thing which has to be done is to implement a class for the application which inherits
from the OpenSGApplicationBase. This class is called GoingImmersive in our case. The following
listing shows the declaration of this class:

#include <OpenSGApplicationBase/OpenSGApplicationBase.h>

#include <inVRs/SystemCore/WorldDatabase/WorldDatabase.h>

OSG_USING_NAMESPACE

class GoingImmersive: public OpenSGApplicationBase {

...

}; // GoingImmersive

Listing 9.1: GoingImmersive.cpp - Top Part of application

54

http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html
http://doxygen.invrs.org//classGoingImmersive.html

Chapter 9 - Wrapping Functionality 9.3. Initial Tutorial Application

In this tutorial the whole application will be developed in a single .cpp file without using a header
file. This is done in order to simplify the documentation but could be splitt up into separate a
header and source file as well.
After the class is declared we have to define the members of our class. In the first step of our
application development the only member variable we need is the url to the main inVRs config-
uration file. This member variable will be initialized in the constructor of the GoingImmersive

class:

class GoingImmersive: public OpenSGApplicationBase {

private:

std:: string defaultConfigFile; // config file

public:

GoingImmersive () {

defaultConfigFile = "config/general.xml";

} // constructor

...

}; // GoingImmersive

Listing 9.2: GoingImmersive.cpp - Top Part of class

Besides the constructor the application class must also contain a destructor. In this destructor the
OpenSGApplicationBase :: globalCleanup() method must be called in order to free all memory
reserved by the different inVRs components.

...

~GoingImmersive () {

globalCleanup ();

} // destructor

...

Listing 9.3: GoingImmersive.cpp - Destructor

Since the OpenSGApplicationBase is an abstract class several methods have to be implemented in
the derived class. The first method which must be implemented is the getConfigFile() method.
This method must return the url to the main inVRs configuration file. The default configuration
file is already stored in a member variable. Besides the default configuration we also want to
support the user to pass the url to a different configuration file via the command line. Therefore
the CommandLineArgumentWrapper class can be used. The following implementation shows how
to support the passing of the configuration file url via the command line argument config=...:

...

std:: string getConfigFile(const CommandLineArgumentWrapper& args) {

if (args.containOption("config"))

return args.getOptionValue("config");

else

return defaultConfigFile;

} // getConfigFile

...

Listing 9.4: GoingImmersive.cpp - getConfigFile()

The next method which has to be implemented is the initialize() method. This method
is called automatically after all inVRs components were initialized. In this method we will set

55

http://doxygen.invrs.org//classGoingImmersive.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html
http://doxygen.invrs.org//classCommandLineArgumentWrapper.html

Chapter 9 - Wrapping Functionality 9.3. Initial Tutorial Application

the root node of the scene graph and the initial transformation of the user in the virtual world.
Therefore the member variables sceneGraphInterface and localUser which are inherited from
the ApplicationBase class are used:

...

bool initialize(const CommandLineArgumentWrapper& args) {

OpenSGSceneGraphInterface* sgIF =

dynamic_cast <OpenSGSceneGraphInterface *>(sceneGraphInterface);

// must exist because it is created by the OutputInterface

if (!sgIF) {

printd(ERROR , "GoingImmersive :: initialize (): Unable to obtain

SceneGraphInterface !\n");

return false;

} // if

// obtain the scene node from the SceneGraphInterface

NodePtr scene = sgIF ->getNodePtr ();

// set root node to the responsible SceneManager (managed by

OpenSGApplicationBase)

setRootNode(scene);

// set our transformation to the start transformation

TransformationData startTrans =

WorldDatabase :: getEnvironmentWithId (1) ->getStartTransformation (0);

localUser ->setNavigatedTransformation(startTrans);

return true;

} // initialize

...

Listing 9.5: GoingImmersive.cpp - initialize()

Further methods which have to be implemented are the display() and the cleanup() method.
In our current application we don’t have to update any information and also don’t have to clean
up anything, so both methods are empty:

...

void display(float dt) {

} // display

void cleanup () {

} // cleanup

...

Listing 9.6: GoingImmersive.cpp - display() and cleanup()

This is all we have to implement in our first GoingImmersive class. Finally we need a main
method which creates an instance of our application class and starts the application:

...

int main(int argc , char** argv) {

GoingImmersive* app = new GoingImmersive ();

if (!app ->start(argc , argv)) {

printd(ERROR , "Error occured during startup !\n");

delete app;

return -1;

} // if

delete app;

56

http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classGoingImmersive.html

Chapter 9 - Wrapping Functionality 9.4. Summary

return 0;

} // main

Listing 9.7: GoingImmersive.cpp - main method

That was the whole code of the initial application. Additionally to this code a predefined set of
configuration files is contained in the tutorial package. A basic introduction to the configuration
files was already given in the previous tutorial – the Medieval Town Tutorial. Additionally a
separate manual on Configuring the inVRs Framework can be found on the inVRs homepage
which describes the single configuration files in detail. Thus the configuration files will not be
explained at this point, but please remember to insert your plugin path into general.xml, like you
have done in the Medieval Town application:

<path name="Plugins"

path="/please/insert/your/inVRs/libs/path/here/" />

Listing 9.8: general.xml - Enter Path to inVRs Libraries

When executing this application you will see a predefined scene containing an plane, a coordinate
system and the inVRs logo. This is shown in Figure 9.1. Due to the configured navigation module
you can navigate through this environment via mouse and keyboard input.

Figure 9.1: The basic Going Immersive application

9.4 Summary

This chapter has given an insight into concepts of wrapping setup of inVRs applications. As a
generic approach the application base was introduced. Additionally the OpenSGApplicationBase
was described as an implementation of the generic approach. By using application bases you
should be able to develop basic inVRs applications with a few lines of code.
The following chapter will show how to interconnect immersive displays to your inVRs application.

57

Chapter 10

Immersive Displays

The inVRs framework is designed to support a large variety of immersive displays. Typically
immersive displays share the feature of generating stereoscopic output on multiple display panes.
By using OpenSG1 [Rei02] on the scene graph side the display on such stereoscopic multi-display
installations can be considered as an out-of-the-box feature. The implementation of the inVRs
output interface uses OpenSG for display purposes. The specific multi-display functionality is
abstracted and handled by the external tool – the CAVE Scene Manager.
Generating 3D audio is also supported by inVRs but is not part of this tutorial. Aspects like
haptic displays or motion platforms are so far not covered at all by the framework, although it
would be possible to write drivers for such displays and integrate them into output interface.

10.1 Different Types of Immersive Displays

A huge variety of immersive displays exist. inVRs is focusing on stereoscopic multi-display instal-
lations. Some examples for such displays would be a CAVE or an HMD.
To reduce the problem of multi-display installations there are basically two big setup possibilities.
Either the displays are arranged in a curved or dome-like fashion or in some kind of rectangular
shape. Although an interesting aspect, this part of the tutorial does not concentrate on the dif-
ferent display technologies, but simply on the different display setups, focusing on how to arrange
and configure the display planes.
Many displays are common for VR and some are rather rare. Figure 10.1 illustrates the most
prominent VR displays, a CAVE on the left side and an HMD on the right side.

Figure 10.1: A CAVE and an HMD

1http://www.opensg.org

58

http://www.opensg.org

Chapter 10 - Immersive Displays 10.2. Using the CAVE Scene Manager

Other installations like Curved Screens or Powerwalls are supported as well by the framework.
While a powerwall could be used with the most simple setup, curved displays require a bit for math
for setting them up properly. Figure 10.2 show two wide spread displays which are commonly used
for larger audiences, where the previously introduced displays are more applicable for single users.

Figure 10.2: A Curved Screen and a Powerwall

There are many other setups like for example the ImmersaDesk [CPS+97] or the Responsive
Workbench [KF94].
We will now first have a brief look on how to configure the setup of such immersive displays. In
the next step the interconnection of these displays with the inVRs framework will be explained
in detail.

10.2 Using the CAVE Scene Manager

One of the main tools used by inVRs for handling multi-display functionality is the CAVE Scene
Manager. The stereoscopic multi-display functionality in general is covered by using OpenSG as
a scene graph. The CAVE Scene Manager is simply used for wrapping OpenSG multi-display
support. Additionally it offers the parsing of human readable configuration files. It is designed as
a counterpart to OpenSG’s SimpleSceneManager.
It was originally developed by Adrian Haffegee as a side product of his MSc Thesis [Haf04,
HJAA05]. It acts as a wrapper around the OpenSG multi-display and clustering functionality.
The CAVE Scene Manager is not part of the basic inVRs distribution but it can be downloaded
and installed as an additional tool. More detail is provided in the CAVE Scene Manager Manual.
The tool consists of four main header and source files:

• OSGCAVESceneManager.h

This source file contains the main functionality and user API of the scene manager. It allows
to attach a scene to main node and interact with it in a similar way than the SimpleScene-
Manager.

• OSGCAVEConfig.h

This file contain functionality for parsing, loading, and setting the scene managers configu-
ration. The configuration of the scene manager is mainly concerned with display setup.

• OSGCAVEWall.h

This source file deals with the setup of wall displays. Typically several projection panes are
used for displaying an immersive scene.

• appctrl.h

59

http://www.opensg.org/doc-1.6.0//classosg_1_1SimpleSceneManager.html

Chapter 10 - Immersive Displays 10.3. Configuring the CAVE Scene Manager

This source file contains functionality for starting and shutting down display servers. It
wraps as well the setup of the OpenSG MultiDisplayWindow

10.3 Configuring the CAVE Scene Manager

The configuration of the CAVE Scene Manager is highly intuitive and can be used to support
pretty much every multi-display installation, which consists of rectangular drawing panes.
The configuration takes typically keywords described in the following and a set of keyword-specific
parameters separated by spaces. Comments are indicated by a # following the comment.
The most important keywords for the configuration of the CAVE Scene Manager are given in the
following list:

• Walls
This keyword is used to define a list of display panes which are to be used.

• WallDisplay
A detailed wall configuration is provided after a WallDisplay keyword. Name, display (e.g.
:0.1) and resolution for the display pane is provided. Additional offsets can be can be defined.
These offsets can become interesting if overlaps of displays are used.

• ProjectionData
This keyword defines the alignment of the different projection panes.

• DisplayMode
The display mode can be set either to mono for monoscopic display or to stereo for stereo-
scopic display.

• InterocularDistance
The eye separation is provided as a number and an optional unit following afterwards.

• Origin
This keyword describes where the coordinate origin in physical space is located. The data
is used for correct rendering of the VE.

• CAVEWidth
In case a CAVE-like display is used the width is provided by this parameter.

• CAVEHeight
If a CAVE is used the height can be defined by using this keyword.

• Units
The units can be either meters, centimeters or foot. Typically inVRs make use of centimeters
as units.

Many more keywords are available for the configuration of the CAVE Scene Manager and respec-
tively tha multi-display setup. They will be explained in depth in the CAVE Scene Manager
Manual. The source code of the class OSGCAVEConfig provides additional details on the configu-
ration of the CAVE Scene Manager.
The following example will give an idea how to setup your immersive display for inVRs. It provides
the configuration of a typical CAVE setup.

##

Specify here which CAVE walls you want to run and in which graphics pipe

walldisplays for the jku -cave (has 4 walls)

##

Walls front left right floor

##

60

http://www.opensg.org/doc-1.6.0//classosg_1_1MultiDisplayWindow.html
http://doxygen.invrs.org//classOSGCAVEConfig.html

Chapter 10 - Immersive Displays 10.3. Configuring the CAVE Scene Manager

Display information for walls (pipe # & (optional) window geometry)

window geometry: XDIMxYDIM+XOFFSET+YOFFSET

2006 -11 -08 ZaJ: new layout

##

WallDisplay front :1.0 1136 x1136 +0+0

WallDisplay right :1.1 1136 x1136 +0+0

WallDisplay left :1.2 1136 x1136 +0+0

WallDisplay floor :1.3 1136 x1136 +0+0

##

2008 -11 -24 LeB: new layout

info on refpoint for JKU CAVE: center of floor plane (X, x=0,y=0,z=0)

#

P2 +--------------------------+

| x=-155 |

| y=0 |

| z=-155 |

| |

| |

| X |

| |

| |

| x=-155 x=155 |

| y=0 y=0 |

| z=-155 z=155 |

P1 +--------------------------+ P3

#

ProjectionData screenx * wall P1 P2 P3

##

ProjectionData floor * wall -120 0 120 -120 0 -120 120 0 120 centimeters

##

Display mode - mono or stereo

##

DisplayMode stereo

##

#InterocularDistance <distance > <units> #

##

InterocularDistance 6.0 cm

##

Origin of coordinates of the CAVE (given in distance to the walls)

distance to left wall distance to floor distance to front wall

##

Origin 120.0 0.0 120.0 centimeters

Cave width (& depth)

CAVEWidth 240.0 centimeters

Cave height

CAVEHeight 240.0 centimeters

##

Cave units for GL coordinates (Meters or feet)

- units tracking data will be given in

##

Units centimeters

##

Size of screen & viewing distance - defines simulator viewing frustum

##

SimulatorView 10 7.5 2

##

Which type of wand is being used (mouse or PC)

##

61

Chapter 10 - Immersive Displays 10.4. Displaying Virtual Environments

Wand daemon

##

Type of tracking (birds , polhemus , logitech , mouse , or simulator)

##

TrackerType daemon

##

Various Settings

##

HideCursor y

TrackerDaemonKey 4129

ControllerDaemonKey 4128

Listing 10.1: GoingImmersive.cpp

10.4 Displaying Virtual Environments

After a configuration file for the CAVE Scene Manager was created we can start to update the
initial GoingImmersive application to run on the configured display(s). If you haven’t created a
configuration file yet or you want to test this application on a monoscopic desktop system you can
use the configuration file mono.csm which is contained in this tutorial.
Before we can start updating the application we have to prepare the CAVE Scene Manager to be
able to display the application. Therefore we have to understand how the visualization is realized
by this class. The CAVE Scene Manager is separated into two individual parts, the client part
and the render server part. The client part is the CAVE Scene Manager class itself. It is used by
the application to manage the OpenSG scene graph. In general the CAVE Scene Manager can be
used independently with OpenSG offering an extensive user API. We will skip the description of
the API since inVRs will take care of most of the functionality.
For displaying the scene the render servers are used. The render servers are stand alone applications
which are receiving and rendering the scene graph information from the client part of the CAVE
Scene Manager via a network connection. They are very similar to the basic OpenSG render
servers as introduced in Oliver Aberts’ OpenSG Tutorial [Abe04].
In order to run an application on a multi-display system multiple render servers have to be started.
One server is used for one display pane. Depending on your system this can either be done by
the application automatically or you have to start the servers in advance by hand. The automatic
startup of the render server(s) works in general when these can be run on the same host as the
main application. This is true for example on a single-display setup which is run on a single host,
but also on a multi-display setup when the graphics pipes are directly accessible from the host the
application is started (e.g. shared memory systems with multiple X-servers). On cluster systems
the render servers usually must run on the single graphics nodes which means that they can not
be started automatically by inVRs. In this section we will present the configuration for a single
monoscopic display with automatic render-server startup but also describe the steps which have
to be executed in order to start the servers manually (for use on multi-display sytems based on a
cluster).
To be able to start the render server automatically the binary of the render server has to be
placed into the folder from where the application is executed. For the monoscopic server the
binary is called server-mono, for stereoscopic visualizations you have to use the server-stereo
binary. Copy these binaries from bin subfolder of your inVRs installations into your application
directory GoingImmersive now. Furthermore these binaries need to find the CAVE Scene Manager
library (libCAVESceneManager.so on Linux systems, libCAVESceneManager.dylib on Mac OSX
systems, or CAVESceneManager.dll on windows systems). In order to find this library you can
either add the lib path of your inVRs installation directory to your library path environment
variable or you can simply copy the file into the GoingImmersive directory.

62

Chapter 10 - Immersive Displays 10.4. Displaying Virtual Environments

Now that the binary for the render server is available we have to tell the application to use the
CAVE Scene Manager instead of the SimpleSceneManager. When writing an application from
scratch without using the ApplicationBase helpers this must be changed in the source code. Since
we are using the OpenSGApplicationBase class we can do this by simply adding some entries in
the general inVRs configuration file general.xml.
The useCSM entry tells the OpenSGApplicationBase to use the CAVESceneManager instead of the
default SimpleSceneManager. The second argument csmConfigFile defines which configuration
file should be used. In our case we are using the file mono.csm which is included in this tutorial. In
the next option the automatic startup of the render servers is configured. If this entry is missing
or set to false you will have to start the render server(s) manually. The fourth entry defines the
relation between the world coordinates and the units used in the real world. In this application
the objects in the virtual world are modeled approximately in the size of meters and the units
used in the configuration file mono.csm are centimeters, so the scale value must be 0.01. Finally
we set a background image for the control window, which is the window where the input goes to.
Note that using a background image for the control window can drop performance depending on
the size of this image. So if you get render performance problems try to either use lower resolution
images or don’t use any image at all.

<OpenSGApplicationBase >

<option key="useCSM" value="true"/>

<option key="csmConfigFile" value="mono.csm"/>

<option key="startRenderServers" value="true"/>

<option key="physicalToWorldScale" value="0.01"/>

<option key="controlWindowImage" value="inVRs_controlwindow.png"/>

</OpenSGApplicationBase >

Listing 10.2: XmlSnippets1.xml - Snippet1-1 → general.xml

Additionally we have to add the paths to the location of the CAVE Scene Manager configura-
tion, which is stored in the configuration file indicated in the previous snippet with the attribute
csmConfigFile:

<path name="CAVESceneManagerConfiguration"

directory="config/outputinterface/cavescenemanager"/>

Listing 10.3: XmlSnippets1.xml - Snippet1-2 → general.xml

The path for loading images has to be set as well. We will need it later on for setting a background
image.

<path name="Images" directory="images/"/>

Listing 10.4: XmlSnippets1.xml - Snippet1-3 → general.xml

That’s all we have to do in order to run the application using the CAVE Scene Manager. When
you start the application now you will notice some additional console output of the CAVE Scene
Manager telling you if the render server(s) could be started successfully or the reason why it could
not be started. If the render server(s) could not be started automatically you should be able to
see the problems on the debug output and try to start the render server(s) manually. You don’t
even have to restart the application for this because it is waiting until all needed render servers
are available before the application continues with the startup.
When the application has started up successfully you can see two windows (assuming you are using
the mono.csm configuration file), one window is used for the render server and another window
which we call the control window.
The control window is the same window which would be used in a SimpleSceneManager application

63

http://www.opensg.org/doc-1.6.0//classosg_1_1SimpleSceneManager.html
http://doxygen.invrs.org//classApplicationBase.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html
http://www.opensg.org/doc-1.6.0//classosg_1_1SimpleSceneManager.html
http://www.opensg.org/doc-1.6.0//classosg_1_1SimpleSceneManager.html

Chapter 10 - Immersive Displays 10.4. Displaying Virtual Environments

to render the scene. Since we are using the CAVE Scene Manager now the rendering is executed
on separate windows which are opened by the render servers. The control window is still visible
and is used for example to read the GLUT input. If you wan’t to control you application and you
are using the GLUT input the control window should be the active window.
In order to get rid of the ugly black background we now add a background image to be used in our
window. This is done in the following source code snippet by calling the setBackgroundImage()
method of the OpenSGApplicationBase class. Note that the usage of background images in
OpenSG can decrease the performance significantly, so don’t use images with a high resolution in
order to avoid low framerates.

setBackgroundImage("background_128.png");

Listing 10.5: CodeSnippets1.cpp - Snippet-1-1 → GoingImmersive.cpp

When building and starting the application now you should see the same result as shown in Figure
10.3:

Figure 10.3: Render server window (front) and control window (inVRs)

The left side of the illustration shows the actual application running on a display server while the
right side displays a control window which is the input and output window of our application.
With the help of the application base and very few code changes and simple configurations we are
able to use immersive displays.
Adapting the configuration of your setup only has to be done once. Generic files like the one for
monoscopic display or stereo display on desktop system are already provided with the distribution
of the CAVE Scene Manager.

64

http://doxygen.invrs.org//classOpenSGApplicationBase.html

Chapter 10 - Immersive Displays 10.5. Summary

10.5 Summary

This chapter has given a very brief overview on common multi-display systems used in the field
of VR. CAVEs, HMDs, curved displays and powerwall installations were shortly introduced. As
a tool for setting up such displays for the inVRs framework the CAVE Scene Manager has been
described. An introduction on the configuration of the scene manager was given as well as a
description on how to interconnect it to inVRs.
You should now be able to display a very simple scene on an arbitrary visual output device. If you
have access to a VR installation it might be worth trying to configure the CAVE Scene Manager
for it and run your application on the VR system.
In the next chapter we will learn how to use typical VR input devices with our current application.
If you have CAVEs or other setups available you should then be able to fully run an inVRs
application on your VR system.

65

Chapter 11

Using the Input Interface

A huge variety of input devices can be thought of and a great set of them is available on the market
of VR installations. Often devices like wands are used in conjunction with tracking systems in
order to allow for user interaction. Considering the tracking as well as the input devices the inVRs
framework is designed to be totally technology agnostic.
In general the inVRs input interface could be extended to support all types of input, like speech
or gestures. So far an interface for the abstraction of the traditional input devices is provided
which reduces the whole data generated by arbitrary devices to a very simple types of data – axes,
buttons and sensors. This abstraction is exposed and later on accessed by the components and
the modules of the framework or an application developed with the inVRs framework.

11.1 Different Types of Input Devices

Two big categories of devices are available which generate input for VR applications, the input
devices providing input intentionally triggered by the user and the tracking systems offering posi-
tion and orientation data on sensors attached to the user or an input device.
In general a vast amount of input devices and tracking systems exist, based on very different tech-
nologies, which are typically accessed by two different kinds of libraries. Either low-level drivers
that are used to access the device directly or high-level libraries like VRPN1 [THS+01], Open-
Tracker2 [RS01, RS05], etc. which wrap together many different of these low-level libraries are
used to gather the input from the devices.

Figure 11.1: Some Typical VR Input devices

1http://www.cs.unc.edu/Research/vrpn/
2http://studierstube.icg.tu-graz.ac.at/opentracker/

66

http://www.cs.unc.edu/Research/vrpn/
http://studierstube.icg.tu-graz.ac.at/opentracker/

Chapter 11 - Using the Input Interface 11.2. Mapping Input on the Abstract Controller

Figure 11.2 shows some devices which are wide spread in the field of Virtual Reality. On the
left side a space mouse, emulating a 6 DOF sensor is shown, the middle illustrates a wand with
buttons and joystick and the right side of the figure shows a pair of pinch gloves which generate
boolean values on contact of the finger tips.

11.2 Mapping Input on the Abstract Controller

In the inVRs framework the actual data of the devices can be either taken directly from the low-
level drivers or alternatively from the high-level libraries 3. To support an input device an interface
between the driver or high-level library and the input interface of the framework is either provided
by inVRs already, as for example for trackD, GLUT, VRPN and an arbitrary UDP controller or
it has to be created by the application developer.
The inVRs framework chooses a very simplistic approach by taking three different types of data
into account as shown in the following list:

• Buttons
They provide boolean values

• Axes
They provide values along a slider

• Sensors
They provide 6DOF position values

These three different types of data can be accessed from the developed application or parts of the
framework. Typically models from the Navigation module or transition functions which form an
interaction technique of the Interaction module make use of such exposed abstracted data. User
defined modules or the application itself can access the data as well.
For access of the data an abstract Controller is configured inside the InputInterface. This
abstract controller exposes the values to the application parts and the framework. But before the
data can be provided a mapping between the devices or better their libraries and the Controller

has to take place.

Figure 11.2: An Example Mapping of the Input Interface

3if you know exactly what device you intend to use it might make sense to connect it by writing an interface
connecting directly to the low-level driver in order to increase performance

67

http://doxygen.invrs.org//classNavigation.html
http://doxygen.invrs.org//classInteraction.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classInputInterface.html
http://doxygen.invrs.org//classController.html

Chapter 11 - Using the Input Interface 11.3. Writing own Devices for the Abstract Controller

An example mapping is given in Figure 11.2. The devices are shown in the left column, the middle
column illustrates the possible output they could generate in an abstracted way. The buttons are
shown as circles, sensors as boxes and axes are shown as cylinders. The right column of the
illustration shows an example XML configuration file which describes how the values provided by
the controller are abstracted by a mapping on the abstract controller.
The mapping shows the controller specification with it’s <data>-node defining which data can be
accessed externally.
Next three groups of devices are identified with their different attributes. Pairs of deviceIndex
attributes referring to the physical device drivers, and controllerIndex attributes, which indicate
the abstract controller data, implement the mapping between the used library, indicated by the
name of the wrapper in the name attribute of the <device>-node, and the Controller of the
input interface.
Once such a controller is defined it’s data can be accessed via the following functions:

• int getButtonValue(int idx)

With this function call the current value of the button can be requested. On the button
additional callbacks can be registered which are trigged depending on the button state.

• float getAxisValue(int idx)

Returns the value of the axis with the given index. Positive and negative floating point
values are valid.

• SensorData getSensorValue(int idx)

Provides a SensorData object containing transformation data about the sensor with the
given index.

• int getNumberOfButtons()

Returns the amount of registered buttons on the abstract controller.

• int getNumberOfAxes()

Returns the amount of registered axes on the abstract controller.

• int getNumberOfSensors()

Returns the amount of registered sensors on the abstract controller.

11.3 Writing own Devices for the Abstract Controller

Developing a device for inVRs is pretty straightforward. The newly developed device has to inherit
from the class InputDevice and implement the functions for polling the values for the buttons,
axes and sensors. Additionally functions for receiving the available amount of these data types
have to be implemented. As an example we are going to develop a device which uses the VRPN
library.
But first let’s have a look at the base class InputDevice which we have to inherit from. The
following methods have to be implemented when inheriting from the InputDevice:

• int getNumberOfButtons()

This method must return the number of buttons which are provided by this device.

• int getNumberOfAxes()

Must return the amount of available axes provided by the device.

• int getNumberOfSensors()

Must return the amount of available sensors provided by the device.

68

http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classcontroller.html
http://doxygen.invrs.org//classSensorData.html
http://doxygen.invrs.org//classInputDevice.html
http://doxygen.invrs.org//classInputDevice.html
http://doxygen.invrs.org//classInputDevice.html

Chapter 11 - Using the Input Interface 11.3. Writing own Devices for the Abstract Controller

• int getButtonValue(int idx)

Must return the value of the button with the passed index. If the device does not provide a
button with this index it must return 0.

• float getAxisValue(int idx)

Must return the value of the axis with the passed index. If the device does not provide an
axis with this index it must return 0.

• SensorData getSensorValue(int idx)

Must return the value of the sensor (translation and orientation) with the passed index. If
the device does not provide a sensor with this index it must return the predefined value
IdentitySensorData.

• void update()

This method is called by the Controller class once a frame in order to update the values
of the input device. It can be used for example in order to read the input values from the
low level library and copy the values into the member variables of the input device.

Besides the pure virtual methods the InputDevice class provides some methods which can be
called by inherited classes:

• void acquireControllerLock()

Call this method if you want to update button, axis or sensor values inside your input device
from another thread or outside of the update() method. By default the update() method
should be used to update the input values of the device. But for example when using a
callback-based mechanism to gain the input values you have to lock the Controller class to
avoid conflicts with reading and writing the new input values. This can be done by calling
this method.

• void releaseControllerLock()

This method must be called in order to release the controller lock again after the method
acquireControllerLock() was called.

• void sendButtonChangeNotification(int buttonIndex, int newButtonValue)

This method must be called whenever the state of a button has changed. It then forwards the
notification to the Controller class which itself sends notifications to all registered listeners
that the button value has changed.

These are all methods you have to cope with when implementing a new input device for inVRs.
Now let’s take a look at a specific implementation, the VrpnDevice. This class allows to gather
button, analog (axis) and tracker (sensor) data from a VRPN device. It therefore uses the VRPN
callback mechanism and stores these values in internal data structures. These values are then
provided to the inVRs application via the methods inherited from the InputDevice class. The
source code for this device which is described in the following can be found in the inVRs sources
in the subfolder tools/libraries/VrpnDevice.
At first we will have a look at the header file:

#ifndef VRPNDEVICE_H_

#define VRPNDEVICE_H_

#include <vrpn_Button.h>

#include <vrpn_Tracker.h>

#include <vrpn_Analog.h>

#include <set >

#include <inVRs/InputInterface/ControllerManager/InputDevice.h>

69

http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classInputDevice.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classInputDevice.html

Chapter 11 - Using the Input Interface 11.3. Writing own Devices for the Abstract Controller

/* ***

* InputDevice class for reading values from the Vrpn library.

*/

class VrpnDevice : public InputDevice {

public:

/**

* Constructor

*/

VrpnDevice(std:: string deviceId , unsigned numSensors , unsigned numButtons ,

unsigned numAxes);

/**

* Destructor

*/

virtual ~VrpnDevice ();

/**

* Returns the number of buttons provided by the input device

*/

int getNumberOfButtons ();

/**

* Returns the number of axes provided by the input device

*/

int getNumberOfAxes ();

/**

* Returns the number of sensors provided by the input device

*/

int getNumberOfSensors ();

/**

* Returns the value of the button with the passed index

*/

int getButtonValue(int idx);

/**

* Returns the value of the axis with the passed index

*/

float getAxisValue(int idx);

/**

* Returns the value of the sensor with the passed index

*/

SensorData getSensorValue(int idx);

/**

* Updates the values of the VrpnDevice

*/

void update ();

/**

* Returns if the VrpnDevice was successfully initialized

*/

bool isInitialized () const;

/**

* Callback method for the tracker

*/

static void VRPN_CALLBACK trackerPosQuatCallback(void *userdata ,

const vrpn_TRACKERCB trackerData);

/**

* Callback method for the buttons

*/

static void VRPN_CALLBACK buttonCallback(void *userdata , const vrpn_BUTTONCB

70

Chapter 11 - Using the Input Interface 11.3. Writing own Devices for the Abstract Controller

buttonData);

/**

* Callback method for the analog input data

*/

static void VRPN_CALLBACK analogCallback(void *userdata , const vrpn_ANALOGCB

analogData);

private:

/**

* Initializes the device

*/

void initializeDevice(unsigned numSensors , unsigned numButtons , unsigned numAxes)

;

/**

* Update tracker data

*/

void updateTracker(const vrpn_TRACKERCB trackerData);

/**

* Update button data

*/

void updateButton(const vrpn_BUTTONCB buttonData);

/**

* Update analog data

*/

void updateAnalog(const vrpn_ANALOGCB analogData);

std::vector <int > buttonValues;

std::vector <float > axisValues;

std::vector <SensorData > sensorValues;

std::set <int > buttonCallbackWarnings;

std::set <int > axisCallbackWarnings;

std::set <int > sensorCallbackWarnings;

/// defines if

bool initialized;

// ID for the device

std:: string deviceId;

/// member for reading the tracker data

vrpn_Tracker_Remote* tracker;

/// member for reading the button data

vrpn_Button_Remote* button;

/// member for reading the axis data

vrpn_Analog_Remote* analog;

}; // VrpnDevice

/* ***

* Factory class for the VrpnDevice

*/

class VrpnDeviceFactory : public InputDeviceFactory {

public:

/**

* Destructor

*/

virtual ~VrpnDeviceFactory () {}

/**

* Creates a new VrpnDevice if the passed className matches

*/

virtual InputDevice* create(std:: string className , ArgumentVector* args = NULL);

}; // VrpnDeviceFactory

71

Chapter 11 - Using the Input Interface 11.3. Writing own Devices for the Abstract Controller

#endif /* VRPNDEVICE_H_ */

Listing 11.1: VrpnDevice.h

In this file we define two classes, the VrpnDevice class which is inherited from the abstract
InputDevice class and a factory class for this device called VrpnDeviceFactory. The VrpnDevice
class implements all pure virtual functions of the InputInterface class. Additionally the class
provides the isInitialized() method which returns whether the VrpnDevice was initialized
successfully or not. Furthermore the class contains three static methods which are used for VRPN
callbacks in order to update the input values of the device (this methods will be described in detail
later in this section).
Besides the public methods the class also contains 4 private methods, one for initializing the device
and three other methods in order to update the internal variables.
The VrpnDevice class contains the following member variables:

• std::vector<int> buttonValues

In this vector the class stores the values of the buttons provided by this input device.

• std::vector<float> axisValues

In this vector the values of the axes provided by this input device are stored.

• std::vector<SensorData> sensorValues

In this vector the values of the sensors provided by this input device are stored.

• std::set<int> buttonCallbackWarnings

std::set<int> axisCallbackWarnings

std::set<int> sensorCallbackWarnings

These sets are used by the class to avoid printing multiple warnings for individual button-
s/axes/sensors which are updated but not provided by the device. This could be the case
when the VRPN library sends updates for more buttons, axes or sensors than configured in
the VrpnDevice. Since these members are only for debug output we can ignore them here.

• bool initialized

This variable indicates whether the initialization of the InputDevice was successful or not.

• std::string deviceId

In this variable the VRPN device identifier is stored (e.g. trackingDevice@serverHost).

• vrpn_Tracker_Remote* tracker

This variable is used for accessing the tracking data provided by the VRPN device.

• vrpn_Button_Remote* button

This variable is used for accessing the buttons provided by the VRPN device.

• vrpn_Analog_Remote* analog

This variable is used for accessing the analog values (like axes) provided by the VRPN device.

This is all we have to know about the header file. Let’s now have a look at the source file to see
how the implementation looks like.
The first method which is called from the VrpnDevice is the constructor. The parameters needed
for the constructor are the device identifier for the VRPN device and the number of provided
buttons, axes and sensors. The constructor then directly calls the initializeDevice() method
which tries to establish the connection to the VRPN device.

72

http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classInputDevice.html
http://doxygen.invrs.org//classVrpnDeviceFactory.html
http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classInputInterface.html
http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classInputDevice.html
http://doxygen.invrs.org//classVrpnDevice.html

Chapter 11 - Using the Input Interface 11.3. Writing own Devices for the Abstract Controller

VrpnDevice :: VrpnDevice(std:: string deviceId , unsigned numSensors , unsigned

numButtons ,

unsigned numAxes) :

initialized(false),

deviceId(deviceId),

tracker(NULL),

button(NULL),

analog(NULL) {

initializeDevice(numSensors , numButtons , numAxes);

} // VrpnDevice

Listing 11.2: VrpnDevice.cpp - Constructor

In the initializeDevice() method the first thing which happens is to create objects for con-
necting to the tracker, button and analog data provided by the VRPN device with the identifier
stored in the deviceId variable. After the objects are created the vectors for storing the button,
axis and sensor values are initialized.
In the next step the static callback methods for the VRPN objects are registered by calling the
register change handler() methods. This allows the VRPN library to notify the VrpnDevice

whenever a value has changed. The first parameter which is passed to this method is the pointer to
the current class instance. This parameter is later on used in the static callback method to identify
the VrpnDevice object which has registered the callback (in case that multiple VrpnDevices are
used). The second parameter identifies the static callback method which will be called. Finally
the initializeDevice() method checks if any of the VRPN objects could be created and sets the
initialized variable accordingly. This variable can then be read by calling the isInitialized()
method (which is done by the VrpnDeviceFactory later).

void VrpnDevice :: initializeDevice(unsigned numSensors , unsigned numButtons ,

unsigned numAxes) {

tracker = new vrpn_Tracker_Remote(deviceId.c_str());

button = new vrpn_Button_Remote(deviceId.c_str ());

analog = new vrpn_Analog_Remote(deviceId.c_str ());

sensorValues.resize(numSensors);

for (int i=0; i < (int)numSensors; i++) {

sensorValues[i] = IdentitySensorData;

} // for

buttonValues.resize(numButtons);

for (int i=0; i < (int)numButtons; i++) {

buttonValues[i] = 0;

} // for

axisValues.resize(numAxes);

for (int i=0; i < (int)numAxes; i++) {

axisValues[i] = 0;

} // for

if (tracker) {

tracker ->register_change_handler(this , &VrpnDevice :: trackerPosQuatCallback);

} else {

printd(WARNING , "VrpnDevice :: initializeDevice (): unable to open vrpn_Tracker !\n

");

} // else

if (button) {

button ->register_change_handler(this , &VrpnDevice :: buttonCallback);

} else {

printd(WARNING , "VrpnDevice :: initializeDevice (): unable to open vrpn_Button !\n"

);

} // else

73

http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classVrpnDeviceFactory.html

Chapter 11 - Using the Input Interface 11.3. Writing own Devices for the Abstract Controller

if (analog) {

analog ->register_change_handler(this , &VrpnDevice :: analogCallback);

} else {

printd(WARNING , "VrpnDevice :: initializeDevice (): unable to open vrpn_Analog !\n"

);

} // else

if (! analog && !button && !tracker)

initialized = false;

else

initialized = true;

} // initializeDevice

...

bool VrpnDevice :: isInitialized () const {

return initialized;

} // isInitialized

Listing 11.3: VrpnDevice.cpp - initializeDevice()

Now that the device is initialized let’s have a look at the static callback methods. Each callback
method has a similar implementation.
At first the passed userdata argument is casted into a VrpnDevice pointer. This pointer is the
same which was passed as first parameter at callback registration time in the initializeDevice()
method.
Afterwards the update method for the appropriate data type of the obtained device object is
called.

void VRPN_CALLBACK VrpnDevice :: trackerPosQuatCallback(void *userdata ,

const vrpn_TRACKERCB trackerData) {

VrpnDevice* instance = (VrpnDevice *) userdata;

if (instance) {

instance ->updateTracker(trackerData);

} else {

printd(WARNING ,

"VrpnDevice :: trackerPosQuatCallback (): callback for unknown VRPN -device

found!\n");

} // else

} // trackerPosQuatCallback

void VRPN_CALLBACK VrpnDevice :: buttonCallback(void *userdata , const vrpn_BUTTONCB

buttonData) {

VrpnDevice* instance = (VrpnDevice *) userdata;

if (instance) {

instance ->updateButton(buttonData);

} else {

printd(WARNING ,

"VrpnDevice :: buttonCallback (): callback for unknown VRPN -device found!\n");

} // else

} // buttonCallback

void VRPN_CALLBACK VrpnDevice :: analogCallback(void *userdata , const vrpn_ANALOGCB

analogData) {

VrpnDevice* instance = (VrpnDevice *) userdata;

if (instance) {

instance ->updateAnalog(analogData);

} else {

printd(WARNING ,

"VrpnDevice :: analogCallback (): callback for unknown VRPN -device found!\n");

} // else

} // analogCallback

Listing 11.4: VrpnDevice.cpp - static VRPN callback methods

74

http://doxygen.invrs.org//classVrpnDevice.html

Chapter 11 - Using the Input Interface 11.3. Writing own Devices for the Abstract Controller

The implementation of the separate update methods is also quite similar. In each method the
index of the corresponding button, axis or sensor is checked and if the index is in a valid range
the values stored in the according vectors are updated. Note that before and after each update
of these vectors the acquireControllerLock() and releaseControllerLock() methods are
called. This is needed in order to avoid the simultaneous reading and writing of input values (e.g.
from different threads). When updating the input values inside the update() method this lock is
acquired automatically.
Finally the method prints a warning message once in case the obtained index for the button,
axis or sensor is out of the provided range (this is why the ...CallbackWarnings members are
needed).
One difference in the updateButton() method in comparison to the other methods is that the
sendButtonChangeNotification() method is called additionally in case the state of a button has
changed. This call is needed by the abstract inVRs Controller in order to notify all registered
listeners that a button value has changed.

void VrpnDevice :: updateTracker(const vrpn_TRACKERCB trackerData) {

int sensorIndex = trackerData.sensor - 1;

if (sensorIndex < 0)

return;

acquireControllerLock ();

if (sensorIndex < (int)sensorValues.size()) {

sensorValues[sensorIndex]. position = gmtl::Vec3f(trackerData.pos[0],

trackerData.pos[1],

trackerData.pos [2]);

sensorValues[sensorIndex]. orientation = gmtl::Quatf(trackerData.quat[0],

trackerData.quat[1],

trackerData.quat[2], trackerData.quat [3]);

} // if

else if (sensorCallbackWarnings.find(sensorIndex) == sensorCallbackWarnings.end()

) {

printd(WARNING ,

"VrpnDevice :: updateTracker (): invalid tracker with index %i found - device

is configured for only %i sensors! Further warnings for this sensor

will be omitted !\n",

sensorIndex , sensorValues.size());

sensorCallbackWarnings.insert(sensorIndex);

} // else

releaseControllerLock ();

} // updateTracker

void VrpnDevice :: updateButton(const vrpn_BUTTONCB buttonData) {

int buttonIndex = buttonData.button;

int buttonValue = buttonData.state ? 1 : 0;

bool change = false;

acquireControllerLock ();

if (buttonIndex < (int)buttonValues.size()) {

if (buttonValues[buttonIndex] != buttonValue) {

buttonValues[buttonIndex] = buttonValue;

change = true;

} // if

} // if

else if (buttonCallbackWarnings.find(buttonIndex) == buttonCallbackWarnings.end()

){

printd(WARNING ,

"VrpnDevice :: updateButton (): invalid button with index %i found - device is

configured for only %i buttons! Further warnings for this button will

be omitted !\n",

buttonIndex , buttonValues.size());

buttonCallbackWarnings.insert(buttonIndex);

} // else

75

http://doxygen.invrs.org//classController.html

Chapter 11 - Using the Input Interface 11.3. Writing own Devices for the Abstract Controller

releaseControllerLock ();

if (change)

sendButtonChangeNotification(buttonIndex , buttonValue);

if (buttonIndex < (int)buttonValues.size()) {

printd(INFO , "VrpnDevice :: updateButton (): updated value of button %i: %i!\n",

buttonIndex ,

buttonData.state);

} // if

} // updateButton

void VrpnDevice :: updateAnalog(const vrpn_ANALOGCB analogData) {

int numAxes = analogData.num_channel;

acquireControllerLock ();

for (int i=0; i < numAxes; i++) {

if (i < (int)axisValues.size()) {

axisValues[i] = analogData.channel[i];

printd(INFO , "\taxis %i: %f\n", i, axisValues[i]);

} // else if

else if (axisCallbackWarnings.find(i) == axisCallbackWarnings.end()){

printd(WARNING ,

"VrpnDevice :: updateAnalog (): invalid axis with index %i found - device is

configured for only %i axes! Further warnings for this axis will be

omitted !\n",

i, axisValues.size());

axisCallbackWarnings.insert(i);

} // else

} // for

releaseControllerLock ();

} // updateAnalog

Listing 11.5: VrpnDevice.cpp - update methods

Now that the callback mechanism is described the only thing which still has to be called is the
mainloop() method of the VRPN objects. These methods are called in the update method of the
VrpnDevice.

void VrpnDevice :: update () {

if (tracker)

tracker ->mainloop ();

if (button)

button ->mainloop ();

if (analog)

analog ->mainloop ();

} // update

Listing 11.6: VrpnDevice.cpp - update()

This is all what is needed in order to get the input values from the VRPN library into the
VrpnDevice class. For publishing these values to the inVRs Controller the virtual methods of
the InputDevice class have to be implemented:

int VrpnDevice :: getNumberOfButtons () {

return buttonValues.size();

} // getNumberOfButtons

int VrpnDevice :: getNumberOfAxes () {

return axisValues.size();

} // getNumberOfAxes

int VrpnDevice :: getNumberOfSensors () {

return sensorValues.size();

76

http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classInputDevice.html

Chapter 11 - Using the Input Interface 11.3. Writing own Devices for the Abstract Controller

} // getNumberOfSensors

int VrpnDevice :: getButtonValue(int idx) {

int result = 0;

if (idx >= 0 && idx < (int)buttonValues.size()) {

result = buttonValues[idx];

} // if

else {

printd(WARNING ,

"VrpnDevice :: getButtonValue (): invalid button index %i passed (device has %

i buttons)!\n",

idx , buttonValues.size());

} // if

return result;

} // getButtonValue

float VrpnDevice :: getAxisValue(int idx) {

float result = 0;

if (idx >= 0 && idx < (int)axisValues.size()) {

result = axisValues[idx];

} // if

else {

printd(WARNING ,

"VrpnDevice :: getAxisValue (): invalid axis index %i passed (device has %i

axes)!\n",

idx , axisValues.size());

} // if

return result;

} // getAxisValue

SensorData VrpnDevice :: getSensorValue(int idx) {

SensorData result = IdentitySensorData;

if (idx >= 0 && idx < (int)sensorValues.size()) {

result = sensorValues[idx];

} // if

else {

printd(WARNING ,

"VrpnDevice :: getSensorValue (): invalid sensor index %i passed (device has %

i sensors)!\n",

idx , sensorValues.size());

} // if

return result;

} // getSensorValue

Listing 11.7: VrpnDevice.cpp - accessor methods for input data

Now with these methods the Controller can access the input data obtained from the VRPN
library and can publish it to the inVRs application.
What still has to be done is the implementation of the VrpnDeviceFactory class. This class is
used during loading of the ControllerManager configuration in order to create a VrpnDevice

instance. The VrpnDeviceFactory must therefore provide a single method create() which takes
two parameters: the first parameter defines the type of the InputDevice which should be created
and the second parameter contains an ArgumentVector which is read from the configuration file.
At first the method checks if the passed className matches to the class the factory can create
(namely VrpnDevice). If not the method must return NULL, so that the ControllerManager

knows that it has to call another factory class. If the class name matches then the method
checks if an ArgumentVector was passed and if this parameter contains the deviceID argument.
This argument is needed in order to find the VRPN device to which the connection should be
established. If this check was successful then the method reads the VRPN device identifier and
the number of buttons, sensors and axes (if defined) from the ArgumentVector. After having
obtained these values a new VrpnDevice object is created. Finally the method checks if the device
could be initialized successfully and returns the device.

77

http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classVrpnDeviceFactory.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classVrpnDeviceFactory.html
http://doxygen.invrs.org//classInputDevice.html
http://doxygen.invrs.org//classArgumentVector.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classArgumentVector.html
http://doxygen.invrs.org//classArgumentVector.html
http://doxygen.invrs.org//classVrpnDevice.html

Chapter 11 - Using the Input Interface 11.4. Interconnecting own Devices with inVRs

InputDevice* VrpnDeviceFactory :: create(std:: string className , ArgumentVector* args)

{

if (className != "VrpnDevice")

return NULL;

if (!args || !args ->keyExists("deviceID")) {

printd(ERROR ,

"VrpnDeviceFactory :: create (): missing argument entry deviceID! Cannot

create Device !\n");

return NULL;

} // if

std:: string deviceId;

unsigned numSensors = 0;

unsigned numButtons = 0;

unsigned numAxes = 0;

args ->get("deviceID", deviceId);

if (args ->keyExists("numSensors"))

args ->get("numSensors", numSensors);

if (args ->keyExists("numButtons"))

args ->get("numButtons", numButtons);

if (args ->keyExists("numAxes"))

args ->get("numAxes", numAxes);

VrpnDevice* device = new VrpnDevice(deviceId , numSensors , numButtons , numAxes);

// check if device could be initialized and return null if not!

if (!device ->isInitialized ()) {

printd(ERROR ,

"VrpnDeviceFactory :: create (): unable to initialize VRPN device with ID %s\n

",

deviceId.c_str());

delete device;

device = NULL;

} // if

return device;

} // create

Listing 11.8: VrpnDevice.cpp - VrpnDeviceFactory::create()

This is everything which has to be implemented in order to integrate the input data from a VRPN
device into inVRs. In the next section the integration of this device into the tutorial application
is described.

11.4 Interconnecting own Devices with inVRs

There are many ways to provide tracking information to the system. In the last section we have
learned how create our own inVRs devices based on existing libraries like for example VRPN.
In this section we will have a look on how to integrate a self-developed device into an inVRs
application. Therefore the class VrpnDevice which was described in the previous section will be
integrated into the Going Immersive tutorial application. Besides the VrpnDevice inVRs also
provides an implementation for a device using the trackD library, namely the TrackdDevice. In
order to allow users of trackD to also use tracking in this tutorials the snippets in this section are
designed in a way to support both devices.
If you don’t have a tracking system available but want to test this application anyways you can
skip the following steps and continue with the chapter 12. The tutorial application is configured
by default to provide a tracking system emulation device which you can use for simulating the
tracking input then.
But now let’s start with the integration of the tracking devices. In order to be able to use non-
default input devices in an application the ControllerManager must at first be aware of these

78

http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classTrackdDevice.html
http://doxygen.invrs.org//classControllerManager.html

Chapter 11 - Using the Input Interface 11.4. Interconnecting own Devices with inVRs

devices. This is achieved by registering the factories for these devices in the class. Therefore at
first the header files for the input devices we want to add have to be included. The includes for
the VrpnDevice and the TrackdDevice are surrounded by #ifdef statements which are needed
to avoid the use of specific VRPN or trackD datatypes. The checked defines are set by CMake
automatically at configuration time, the detailed functionality will be described at the end of this
section.

#ifdef WITH_VRPN_SUPPORT

#include <inVRs/tools/libraries/VrpnDevice/VrpnDevice.h>

#endif

#ifdef WITH_TRACKD_SUPPORT

#include <inVRs/tools/libraries/TrackdDevice/TrackdDevice.h>

#endif

Listing 11.9: CodeSnippets2.cpp - Snippet-2-1 → GoingImmersive.cpp

After the header files are included the new devices can be registered at the ControllerManager.
This has to be done before the ControllerManager is configured in order to allow to create
instances of the new devices as soon as the configuration file is loaded. Therefore the registration
is implemented in the virtual initInputInterfaceCallback() method which is provided by the
OpenSGApplicationBase. Again the checks for the defines are included to avoid the use of libraries
which are not installed on your system.

void initInputInterfaceCallback(ModuleInterface* moduleInterface) {

#ifdef WITH_VRPN_SUPPORT

if (moduleInterface ->getName () == "ControllerManager") {

ControllerManager* contInt = dynamic_cast <ControllerManager *>(moduleInterface

);

assert(contInt);

contInt ->registerInputDeviceFactory(new VrpnDeviceFactory);

} // if

#endif

#ifdef WITH_TRACKD_SUPPORT

if (moduleInterface ->getName () == "ControllerManager") {

ControllerManager* contInt = dynamic_cast <ControllerManager *>(moduleInterface

);

assert(contInt);

contInt ->registerInputDeviceFactory(new TrackdDeviceFactory);

} // if

#endif

} // initInterfaceCallback

Listing 11.10: CodeSnippets2.cpp - Snippet-2-2 → GoingImmersive.cpp

Now that the factories are registered the ControllerManager is able to create TrackdDevices

and VrpnDevices if configured in the configuration file. Next the configurations for the abstract
inVRs controller has to be created. For the sake of simplicity two configuration files are already
contained in this tutorial, one which uses a single VRPN device and another one for using a single
trackD device for input. In the following the configuration for the VRPN device is presented, the
file for trackD is nearly identical and therefore not described here.
The configuration file VrpnController.xml defines a Controller which consists of a single device
of the type VrpnDevice. The argument deviceID defines the VRPN device identifier which is used
in order to connect to the VRPN library. Additionally this device is configured to provide 3
buttons, 2 axes, and 2 sensors to the controller. Afterwards the mapping of the device buttons,
axes and sensors to the controller values is done. In this case the indices of the VRPN device are
equal to the ones used in the Controller. Since no other input device than the VrpnDevice is
used the controller has the same number of buttons, axes and sensors (it could also have less, if not
all values are mapped from the VrpnDevice to the controller). A more detailed description for the

79

http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classTrackdDevice.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classTrackdDevices.html
http://doxygen.invrs.org//classVrpnDevices.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classVrpnDevice.html
http://doxygen.invrs.org//classVrpnDevice.html

Chapter 11 - Using the Input Interface 11.4. Interconnecting own Devices with inVRs

ControllerManager configuration is given by the Configuring the inVRs framework document.

<?xml version="1.0"?>

<!DOCTYPE controllerManager SYSTEM "http: //dtd.inVRs.org/controllerManager_v1 .0a4.

dtd">

<controllerManager version="1.0a4">

<controller buttons="3" axes="2" sensors="2">

<device type="VrpnDevice">

<arguments >

<arg key="deviceID" type="string" value="tracker@127 .0.0.1"/>

<arg key="numButtons" type="uint" value="3"/>

<arg key="numAxes" type="uint" value="2"/>

<arg key="numSensors" type="uint" value="2"/>

</arguments >

<button deviceIndex="0" controllerIndex="0"/>

<button deviceIndex="1" controllerIndex="1"/>

<button deviceIndex="2" controllerIndex="2"/>

<axis deviceIndex="0" controllerIndex="0">

<axisCorrection scale="1" offset="0"/>

</axis>

<axis deviceIndex="1" controllerIndex="1">

<axisCorrection scale="1" offset="0"/>

</axis>

<sensor deviceIndex="0" controllerIndex="0">

<coordinateSystemCorrection >

<translation x="0" y="0" z="0"/>

<rotation x="1" y="0" z="0" angleDeg="0"/>

<scale x="1" y="1" z="1"/>

</coordinateSystemCorrection >

</sensor >

<sensor deviceIndex="1" controllerIndex="1">

<coordinateSystemCorrection >

<translation x="0" y="0" z="0"/>

<rotation x="1" y="0" z="0" angleDeg="0"/>

<scale x="1" y="1" z="1"/>

</coordinateSystemCorrection >

</sensor >

</device >

</controller >

</controllerManager >

Listing 11.11: VrpnController.xml

In order to use this ControllerManager configuration file instead of the default one we have to
change the entry in the InputInterface configuration file inputinterface.xml with the Snippet
2-1. Take care to remove or comment out the line above the snippet.

<!-- IMPORTANT: replace line above with this snippet! -->

<module name="ControllerManager" configFile="VrpnController.xml"/>

Listing 11.12: XmlSnippets2.xml - Snippet2-1 → inputInterface.xml

Now the ControllerManager tries at startup to load the Controller which is defined in the
VrpnController.xml file.
In order to use the Controller effectively also the Navigation configuration should be changed.
Previously the Navigation was configured to work with a keyboard and a mouse. The new
Controller configuration is now similar to a wand device, which has two axes and three buttons.
Thus we will change the Navigation configuration to work with these input values instead. The
configuration is already provided in the tutorial and can be found in the file wandNavigation.xml.
The configuration file defines three models, the translationModel which describes the linear move-
ment direction, the speedModel which defines the speed of the linear motion and the orientation-
Model which defines the change of orientation. For determining the linear movement direction the

80

http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classInputInterface.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classNavigation.html
http://doxygen.invrs.org//classNavigation.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classNavigation.html

Chapter 11 - Using the Input Interface 11.5. Summary

TranslationViewDirectionModel is used which always returns the view direction of the camera.
For the linear speed calculation the SpeedButtonModel is used which defines two buttons of the
Controller which are used for forward and backward movement. And finally for determination of
the orientation change the OrientationDualAxisModel is used which uses two axes for changing
the rotation along two axes (X and Y) and an additional button for switching to the third rotation
axis (Z).

<?xml version="1.0"?>

<!DOCTYPE navigation SYSTEM "http://dtd.inVRs.org/navigation_v1 .0a4.dtd">

<navigation version="1.0a4">

<translationModel type="TranslationViewDirectionModel"/>

<orientationModel type="OrientationDualAxisModel" angle="10">

<arguments >

<arg key="xAxisIndex" type="int" value="0"/>

<arg key="yAxisIndex" type="int" value="1"/>

<arg key="buttonIndex" type="int" value="2"/>

</arguments >

</orientationModel >

<speedModel type="SpeedButtonModel" speed="5">

<arguments >

<arg key="accelButtonIndex" type="int" value="0"/>

<arg key="decelButtonIndex" type="int" value="1"/>

</arguments >

</speedModel >

</navigation >

Listing 11.13: wandNavigation.xml

In order to use this Navigation model the configuration file has to be exchanged in the file
modules.xml:

<!-- IMPORTANT: replace line above with this snippet! -->

<module name="Navigation" configFile="wandNavigation.xml"/>

Listing 11.14: XmlSnippets2.xml - Snippet2-2 → modules.xml

Before rebuilding and starting the application now you should check if your inVRs installa-
tion and the tutorial was build with VRPN and/or trackD support. For your inVRs installa-
tion you can simply look at the inVRs library directory and search for the according libraries
(e.g. for VRPN libinVRsVrpnDevice.so on Linux, or inVRsVrpnDevice.dll on Windows, or
libinVRsVrpnDevice.dylib on Mac OS X). If the libraries are not available you may have to
rebuild inVRs and activate the VRPN or trackD support in the CMake GUI. The same has to
be done for the CMake configuration of the Going Immersive tutorial. Details on the installation
can be found in the appendix.
When you start the application now you should be able to use the axes and buttons of your VRPN
or trackD device for navigation. The tracking information is not used yet, but will be used in the
following chapters.

11.5 Summary

This chapter has briefly introduced different VR input devices and shown how to interconnect
them with the inVRs framework. An abstract controller which maps the physical devices on ab-
stract inVRs data has been described and the configuration of the controller has been explained
in detail. Often own libraries are used to access input devices. Thus the implementation for a
binding to the abstract controller has been explained. VRPN was used as a demonstrator for this
binding.

81

http://doxygen.invrs.org//classTranslationViewDirectionModel.html
http://doxygen.invrs.org//classSpeedButtonModel.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classOrientationDualAxisModel.html
http://doxygen.invrs.org//classNavigation.html

Chapter 11 - Using the Input Interface 11.5. Summary

The reader should now be able to develop own device bindings to the inVRs framework by imple-
menting a class derived from the InputDevice.

82

Chapter 12

Working with Avatars

In the previous chapter we have seen how to use own devices and incorporate tracking systems in
order to navigate through the environment. The gathered tracking data can be used for example
for interaction purposes.
The physical world position and orientation data gathered by the tracking system is not restricted
to be used only for interaction tasks. It can be incorporated as well for the display of remote
users. We will have a closer look at the user representation. This representation of a user in a VE
is commonly known as an avatar.
In the Medieval Town Tutorial we have only used static avatars represented by a simple model.
These basic avatars are implemented in the class SimpleAvatar. A typical static avatar is described
in inVRs by a configuration file as given below.

<?xml version="1.0"?>

<!DOCTYPE simpleAvatar SYSTEM "http: //dtd.inVRs.org/simpleAvatar_v1 .0a4.dtd">

<simpleAvatar version="1.0a4">

<name value="MedievalCitizen"/>

<representation >

<file type="VRML" name="undead.wrl"/>

<transformation >

<translation x="0" y="0" z="0"/>

<rotation x="0" y="1" z="0" angleDeg="180"/>

<scale x="0.08" y="0.08" z="0.08"/>

</transformation >

</representation >

</simpleAvatar >

Listing 12.1: simpleAvatar.xml

The model which is to be loaded is identified by the <file>-node, while an additional transforma-
tion can be applied by the <transformation>-node.
Other types of avatars are available as well, which can make use of the data gathered by tracking
systems in order to provide a visual approximation of the actual users pose.

12.1 Modelling and Exporting Avatars

In general you need a modeling tool for creating inVRs avatars. Simple avatars as described in the
previous section can be easily exported from any modeling tool, which supports the file formats
readable by inVRs and resprectively the underlying scene graph used.
The advanced Avatara avatars make use of so called mesh skinning. Basically a geometry is
interconnected with a set of axes representing the bones of the avatar. By using these avatars it
is possible to define animation sequences. It gives as well individual access to the head bone, the
spine bone and the hand position and orientation.

83

http://doxygen.invrs.org//classSimpleAvatar.html

Chapter 12 - Working with Avatars 12.2. Using Avatara

The inVRs avatars can be modeled with a variety of modelling tools. Additional scripts and tools
for the Avatara package exist for exporting the avatars into a format usable by inVRs. For a
detailed instruction how to model and export avatars please refer to the Avatara Manual. Three
different modeling tools are currently supported for the export of the avatars. 3D Studio Max 1,
MAYA 2 and Blender 3 export the avatar models including animation phases.

12.2 Using Avatara

The inVRs framework provides an external package called Avatara, which was developed by Hel-
mut and Martin Garstenauer. Avatara is implemented as a scene graph specific tool for OpenSG.
The can be attached as a simple OpenSG node. A detailed description on Avatara avatars is given
in the Avatara Manual.
The avatars of the Avatara package offer basically three different functionalities:

• Starting and stopping of animation phases

• Moving the head bone

• Setting the hand position and orientation

If we take a look at the configuration of the Avatara avatars we can see a significant difference to
our previously used simple avatars.

<?xml version="1.0"?>

<!DOCTYPE simpleAvatar SYSTEM "http: //dtd.inVRs.org/avataraAvatar_v1 .0a4.dtd">

<avataraAvatar version="1.0a4">

<name value="Undead"/>

<representation >

<file type="Avatara MDL" name="undead/undead.mdl"/>

<transformation >

<translation x="0" y="0" z="0"/>

<rotation x="1" y="0" z="0" angleDeg=" -90"/>

<scale x=" -0.08" y=" -0.08" z="0.08"/>

</transformation >

</representation >

<texture file="undead/undeadN.jpg"/>

<animations smooth="true" speed="2" default="standing">

<animation name="standing" file="undead/undead_standing.ani"/>

<animation name="walking" file="undead/undead_walking.ani"/>

</animations >

</avataraAvatar >

Listing 12.2: undead.xml

An additional <animations>-node provides a list of animation sequences which can be played on
demand. It can be defined whether the transition between the sequences is to be smooth which is
achieved by interpolating between the different stages. The speed of the animation sequences can
be set and a default animation sequence can be set.
Additionally the format of the model and the animation sequences to be loaded is proprietary and
can be exported by the described modeling tools.

12.3 Integrating an Avatara Avatar into the tutorial

Usually an avatar is used in an application to represent the user in the virtual world. Therefore
the avatar is displayed at the position the user has currently navigated to. In this tutorial we

1http://www.autodesk.de/adsk/servlet/index?siteID=403786&id=10612077
2http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=7635018
3http://www.blender.org

84

http://www.autodesk.de/adsk/servlet/index?siteID=403786&id=10612077
http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=7635018
http://www.blender.org

Chapter 12 - Working with Avatars 12.3. Integrating an Avatara Avatar into the tutorial

will change this default behaviour a bit. The avatar in this tutorial will be used to display the
transformation of the user as it is determined by the tracking system. This will allow us to
interpret the values provided by the tracking system in a graphical way.
At first the WorldDatabase needs a factory for creating an AvataraAvatar at configuration loading
time. Thus we have to register this factory in our application. The header file containing the
AvataraAvatarFactory has to be included first:

#include <inVRs/tools/libraries/AvataraWrapper/AvataraAvatar.h>

Listing 12.3: CodeSnippets3.cpp - Snippet-3-1 → GoingImmersive.cpp

Next the factory is registered in the WorldDatabase. This is done in the initCoreComponentCallback()
method which is called before the components of the SystemCore are configured. The method
checks for the callback for the UserDatabase initialization. This is done because the avatar config-
uration is referenced by the UserDatabase configuration, although the WorldDatabase is respon-
sible for loading the avatar. When the callback for the UserDatabase initialization is executed
the avatar factory is registered in the WorldDatabase.

void initCoreComponentCallback(CoreComponents comp) {

// register factory for avatara avatars

if (comp == USERDATABASE) {

WorldDatabase :: registerAvatarFactory (new AvataraAvatarFactory ());

} // else if

} // initCoreComponentCallback

Listing 12.4: CodeSnippets3.cpp - Snippet-3-2 → GoingImmersive.cpp

Now that the avatara avatar can be loaded the UserDatabase configuration file must be updated
in order to define the configuration file for the avatar.

<avatar configFile="undead.xml"/>

Listing 12.5: XmlSnippets3.xml - Snippet 3-1 → userDatabase.xml

This is all that has to be done in order to get the avatar into the application. What is still missing
is the update of the avatar’s transformation. Usually this is done by the TransformationManager

when updating the navigated transformation of the user. But in this tutorial the avatar should not
represent the user in the virtual world but visualize the user as recognized by the tracking system.
Thus we have to update the avatar transformation manually in our application. For this we need
at first two variables, one for storing the pointer to the avatar and another one for defining the
initial transformation of the avatar in the scene. This initial transformation represents the center
point of the tracking system (0,0,0) in the virtual world.

AvatarInterface* avatar;

gmtl:: Vec3f COORDINATE_SYSTEM_CENTER;

Listing 12.6: CodeSnippets3.cpp - Snippet-3-3 → GoingImmersive.cpp

In the constructor of the application these two variables are then initialized. The initial transfor-
mation of the avatar is set to the center point of the platform in the middle of the scene.

avatar = NULL;

COORDINATE_SYSTEM_CENTER = gmtl::Vec3f(5, 1, 5);

Listing 12.7: CodeSnippets3.cpp - Snippet-3-4 → GoingImmersive.cpp

85

http://doxygen.invrs.org//classWorldDatabase.html
http://doxygen.invrs.org//classAvataraAvatar.html
http://doxygen.invrs.org//classAvataraAvatarFactory.html
http://doxygen.invrs.org//classWorldDatabase.html
http://doxygen.invrs.org//classSystemCore.html
http://doxygen.invrs.org//classUserDatabase.html
http://doxygen.invrs.org//classUserDatabase.html
http://doxygen.invrs.org//classWorldDatabase.html
http://doxygen.invrs.org//classUserDatabase.html
http://doxygen.invrs.org//classWorldDatabase.html
http://doxygen.invrs.org//classUserDatabase.html
http://doxygen.invrs.org//classTransformationManager.html

Chapter 12 - Working with Avatars 12.4. Testing the avatar without a tracking system

In the initialize() method the pointer to the avatar is now obtained from the local User object.
The variable localUser which is used therefore is provided by the OpenSGApplicationBase.

avatar = localUser ->getAvatar ();

if (! avatar) {

printd(ERROR ,

"GoingImmersive :: initialize (): unable to obtain avatar! Check

UserDatabase configuration !\n");

return false;

} // if

Listing 12.8: CodeSnippets3.cpp - Snippet-3-5 → GoingImmersive.cpp

Now that the pointer to the avatar is obtained we can write a method which updates the trans-
formation of the avatar. This method first requests the transformation of the user relative to
the tracking system center. By default a tracking system has at least two sensors, one for the
head transformation of the user and another one for the transformation of the user’s hand (or
input device). This allows for correcting the perspective for this user and enables interaction but
does not provide the correct position of the user (meaning the point where the user’s feet hit the
ground) relative to the tracking system center. To get this position exactly an additional sensor
would be needed at the feet of the user. To avoid this additional sensor inVRs provides a concept
which let’s you calculate the user transformation relative to the tracking system center, called the
UserTransformationModel. Several implementations can exist for this model, by default inVRs
uses the HeadPositionUserTransformationModel. This model takes the position of the sensor
used for head tracking (which has index 0 by default) and removes the height value to approximate
the user position. This transformation is also the one which is requested here in the application.
This transformation is then added to the center transformation of the platform and finally set as
avatar transformation.

void updateAvatar () {

TransformationData trackedUserTrans = localUser ->getTrackedUserTransformation ()

;

trackedUserTrans.position += COORDINATE_SYSTEM_CENTER;

avatar ->setTransformation(trackedUserTrans);

} // updateAvatar

Listing 12.9: CodeSnippets3.cpp - Snippet-3-6 → GoingImmersive.cpp

In order to update this transformation continuously this method has to be called once a frame.
This is achieved by adding a method call into the update() method.

updateAvatar ();

Listing 12.10: CodeSnippets3.cpp - Snippet-3-7 → GoingImmersive.cpp

Now the avatar is fully integrated into our application and is displayed at the transformation
determined by the tracking system. When you start the application now you should see the
movement of the avatar according to your movement tracked by the tracking system.

12.4 Testing the avatar without a tracking system

In case you don’t have a tracking system available you can use an emulator device provided
by inVRs, the GlutSensorEmulatorDevice. This device allows you to simulate the output of a
tracking system with the help of a mouse and a keyboard. By default the GoingImmersive tutorial

86

http://doxygen.invrs.org//classUser.html
http://doxygen.invrs.org//classOpenSGApplicationBase.html
http://doxygen.invrs.org//classUserTransformationModel.html
http://doxygen.invrs.org//classHeadPositionUserTransformationModel.html
http://doxygen.invrs.org//classGlutSensorEmulatorDevice.html

Chapter 12 - Working with Avatars 12.4. Testing the avatar without a tracking system

application is configured to use this device for the abstract inVRs Controller. The device is
configured in the ControllerManager configuration file MouseKeybSensorController.xml:

<?xml version="1.0"?>

<!DOCTYPE controllerManager SYSTEM "http: //dtd.inVRs.org/controllerManager_v1 .0a4.

dtd">

<controllerManager version="1.0a4">

<controller buttons="11" axes="2" sensors="2">

<device type="GlutMouseDevice">

<arguments >

<arg key="axisReleaseSpeed" type="float" value="20"/>

</arguments >

<button deviceIndex="0" controllerIndex="0"/>

<button deviceIndex="1" controllerIndex="1"/>

<button deviceIndex="2" controllerIndex="2"/>

<axis deviceIndex="0" controllerIndex="0">

<axisCorrection scale="1" offset="0"/>

</axis>

<axis deviceIndex="1" controllerIndex="1"/>

</device >

<device type="GlutCharKeyboardDevice">

<button deviceIndex="119" controllerIndex="3" /> <!-- W -->

<button deviceIndex="115" controllerIndex="4" /> <!-- S -->

<button deviceIndex="97" controllerIndex="5" /> <!-- A -->

<button deviceIndex="100" controllerIndex="6" /> <!-- D -->

<button deviceIndex="56" controllerIndex="7" /> <!-- keypad 8 -->

<button deviceIndex="53" controllerIndex="8" /> <!-- keypad 5 -->

<button deviceIndex="52" controllerIndex="9" /> <!-- keypad 4 -->

<button deviceIndex="54" controllerIndex="10"/> <!-- keypad 6 -->

</device >

<device type="GlutSensorEmulatorDevice">

<arguments >

<arg key="numberOfSensors" type="uint" value="2"/>

<arg key="switchSensorButton" type="uint" value="256"/>

<arg key="switchTransformationTargetButton" type="uint" value="257"/>

<arg key="switchAxesButton" type="uint" value="258"/>

</arguments >

<sensor deviceIndex="0" controllerIndex="0">

<coordinateSystemCorrection >

<translation x="0" y="0" z="0"/>

<scale x="100" y="100" z="100"/>

</coordinateSystemCorrection >

</sensor >

<sensor deviceIndex="1" controllerIndex="1">

<coordinateSystemCorrection >

<translation x="0" y="0" z="0"/>

<scale x="100" y="100" z="100"/>

</coordinateSystemCorrection >

</sensor >

</device >

</controller >

</controllerManager >

Listing 12.11: MouseKeybSensorController.xml

In this configuration file the Controller is composed out of three different input devices: the
GlutMouseDevice which is used to get the input from a mouse, the GlutKeyboardDevice which
reads the keyboard keys as buttons and the GlutSensorEmulatorDevice which creates virtual
sensor values with the help of mouse and keyboard.
The first argument for the GlutSensorEmulatorDevice defines the number of emulated sensors
which are provided by this device. In this case 2 sensors are simulated. The next argument defines
which button is used to switch between the sensors. The button values 0-255 are reserved for the
keyboard buttons (ascii values), the buttons 256-258 correspond to the mouse buttons left, middle
and right. The third argument defines which button is used to switch between the translation and

87

http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classGlutMouseDevice.html
http://doxygen.invrs.org//classGlutKeyboardDevice.html
http://doxygen.invrs.org//classGlutSensorEmulatorDevice.html
http://doxygen.invrs.org//classGlutSensorEmulatorDevice.html

Chapter 12 - Working with Avatars 12.5. Summary

rotation of the currently emulated sensor. And the last argument defines which button is used to
switch the Y and the Z axis in the sensor simulation.
In the the two following <sensor> elements the mapping from the sensor index in the device to the
sensor index of the controller is established. In this definition you can see that the sensor values
are scaled by the factor 100 in each axis, just to match to the values expected by the application.
When starting the application you can now switch between the normal navigation and the sensor
emulation mode by pressing the keyboard button 1. When pressing the left mouse button you can
switch between the two sensors you want to manipulate. Pressing the middle mouse button allows
you to switch between the manipulation of the translation and the rotation part of the current
sensor. And pressing the right mouse button allows you to switch between the manipulation along
the Y or Z axis of the current sensor. Figure 12.1 shows what you will see.

Figure 12.1: The Avatara avatar

12.5 Summary

This chapter has briefly introduced the concepts of avatars in an inVRs virtual world. The use of
the external Avatara avatars has been described in detail. These avatars have been interconnected
and can be used to display animation sequences so far. Now we should be able to display a user
using tracking systems inside an immersive VE.

88

Chapter 13

Coordinate Systems

Coordinate systems play an important role in VEs. They are used to display objects at certain
positions with a given orientation or even more to establish relationships between objects. In
inVRs a set of coordinate systems is used to represent the users’ avatars.
In inVRs the same coordinate system as in OpenGL is used, which is a right handed coordinate
system where the axes point into the following directions:

• X-axis: point to the right

• Y-axis: points to top

• Z-axis: towards the observer out of the screen

13.1 User Coordinates

For interaction, navigation or simply to display an avatar several coordinate systems are necessary
in the inVRs framework. Figure 13.1 illustrates the most important inVRs coordinate systems.

Figure 13.1: Coordinate Systems of the User

As illustrated in Figure 13.1 the following five coordinate systems are required for a correct user
display and will be explained in the subsequent paragraphs:

1. Origin of the VE

2. Navigated transformation

89

Chapter 13 - Coordinate Systems 13.1. User Coordinates

3. User transformation

4. Hand transformation (often identical to the cursor transformation)

5. Head transformation (often identical to the camera transformation)

Navigated Transformation The navigated transformation marked by (2), is the result of
navigation processing provided by the navigation module. This coordinate system of the navigated
transformation is directly related to the origin of the VE. If no additional tracking information is
provided the avatar is placed at the origin of this coordinate system. The navigated transformation
is considered the origin of the tracking system if available.

User Transformation Besides on the navigated position of the user, other coordinate systems
have to be set up to represent the embodiment of the user correctly in the NVE. When a tracking
system is available the tracked position of the user can be added to the navigated position in order
to determine the avatar transformation. By default the tracked position of the user is determined
by taking the position of the head sensor and setting the height-value to 0 to approximate the
position of the user’s feet. If no tracking system is used the head tracking data is set to the identity
matrix.
The user transformation can be obtained on two different ways, either by taking the transformation
relative to the center of the tracking system which is called Tracked User Transformation in inVRs
or relative to the origin of the VE, which is called World User Transformation. The world user
transformation is therefore calculated by:

worldUserTrans = navigatedTrans ∗ trackedUserTrans

Hand Transformation The hand transformation is the value provided by the hand sensor,
which is typically integrated in the wand or attached to a data glove. By default the hand sensor
in inVRs is the one with index 1 in the Controller. It provides information on where the
avatar’s hand should be located and can be used for the correct user representation display if
inverse kinematics is used or for interaction purposes if the user’s cursor is related directly to the
hand.
The hand transformation can be provided either relative to the tracking system center, or relative
to the user transformation or relative to the origin of the virtual world. The transformation
relative to the tracking system center is directly provided by the sensor of the input device. Based
on this the other transformations can be calculated by:

userHandTrans = trackedUserTrans−1 ∗ trackedHandTrans
worldHandTrans = navigatedTrans ∗ trackedHandTrans

Head Transformation The head transformation is provided by the head sensor gathered by the
tracking system. By default the head sensor has the Controller index 0 in an inVRs application.
The head transformation can be used for example to calculate the transformation of the camera.
Like the hand transformation also the head transformation can be retrieved in three ways, either
by directly from the sensor (which is relative to the tracking system center), or relative to the
user transformation or relative to the virtual world center. Based on the first transformation the
others can be calculated by:

userHeadTrans = trackedUserTrans−1 ∗ trackedHeadTrans
worldHeadTrans = navigatedTrans ∗ trackedHeadTrans

90

http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classController.html

Chapter 13 - Coordinate Systems 13.2. Visualizing Transformations

Sensor Transformations Besides the two special sensor transformations for head and hand the
transformations of any number of additional sensors can be used in inVRs. These transformations
can again be obtained directly from the tracking system, relative to the user or relative to the
world:

i...sensorIndex

userSensorTransi = trackedUserTrans−1 ∗ trackedSensorTransi
worldSensorTransi = navigatedTrans ∗ trackedSensorTransi

The special indices 0 and 1 return exactly the head and hand transformations described previously.

Cursor Transformation The cursor transformation is used to define the transformation of the
virtual cursor relative to the origin of the virtual world. Different cursor transformation models
are provided in inVRs for calculating this transformation. The information about the chosen
cursor transformation model is stored in the user database.
The cursor of the user can be represented in many ways which will be explained in future tutorial.

Camera Transformation The transformation of the camera is calculated and constantly up-
dated inside the TransformationManager. By default the camera transformation corresponds to
the navigated transformation of the user.

13.2 Visualizing Transformations

In this section the current tutorial application is extended in order to display the transformations
of the different sensors of the Controller in the virtual world. The transformations are visualized
with the help of multiple entities which have a 3D model in the form of a coordinate system.
One coordinate system entity will be used to visualize the tracked user transformation, the other
entities visualize the tracked sensor transformations of each sensor provided by the Controller.
The first step in achieving this goal is to determine how many coordinate system entities have to
be created in our application. One entity is already contained in the application and is displayed at
the center of the platform. This one is will be used for visualizing the tracked user transformation.
Thus the number of entities which still have to be created corresponds to the number of sensors
provided by the Controller. Therefore at first a variable is defined in which the number of sensors
is stored. The value for this variable is then obtained in the initialize() method.

int numberOfSensors;

Listing 13.1: CodeSnippets4.cpp - Snippet-4-1 → GoingImmersive.cpp

In the initialize() method at first the used controller is requested from the ControllerManager.
From this controller the number of sensors is then stored in the variable.
In the next step a new instance of the coordinate system entity is created for each sensor by calling
the createEntity() method of the WorldDatabase. The first parameter of this method defines
the ID of the EntityType from which an instance should be created. This ID is the one defined
in the EntityType configuration file entities.xml. The second parameter defines the ID of the
Environment in which the new Entity instance should be created. Our tutorial application only
uses a single Environment with ID 1.

ControllerInterface* controller = controllerManager ->getController ();

if (! controller) {

printd(ERROR ,

"GoingImmersive :: initialize (): unable to obtain controller! Check

ControllerManager configuration !\n");

91

http://doxygen.invrs.org//classTransformationManager.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classControllerManager.html
http://doxygen.invrs.org//classWorldDatabase.html
http://doxygen.invrs.org//classEntityType.html
http://doxygen.invrs.org//classEntityType.html
http://doxygen.invrs.org//classEnvironment.html
http://doxygen.invrs.org//classEntity.html
http://doxygen.invrs.org//classEnvironment.html

Chapter 13 - Coordinate Systems 13.2. Visualizing Transformations

return false;

} // if

numberOfSensors = controller ->getNumberOfSensors ();

// create an instance of the coordinate system entity (ID=10) for each

// sensor in the environment with ID 1

for (int i=0; i < numberOfSensors; i++) {

WorldDatabase :: createEntity (10, 1);

} // for

Listing 13.2: CodeSnippets4.cpp - Snippet-4-2 → GoingImmersive.cpp

Now that all needed entities are created a method has to be added which updates the transforma-
tion of the coordinate system entities. This method will be called updateCoordinateSystems().
Inside this method at first the pointer to the EntityType which is used for the coordinate systems
is obtained from the WorldDatabase. From this EntityType the list of all instances (coordinate
system entities) is requested. Then the transformation of the first entity is calculated. This trans-
formation represents the tracked user transformation, thus this transformation is requested from
the local User object. To this transformation the position offset of the platform center is added
(which represents to the tracking system center). Finally the Entity transformation is then up-
dated with the calculated one.
After the tracked user transformation the tracked sensor transformations are updated. Therefore
a loop iterates over the number of available sensors. Each single sensor transformation is then
requested from the local User object. You may now wonder why these values are not taken from
the Controller directly. In this application it would not make any change if the transformations
would be obtained from the Controller instead. But using the methods from the User has two big
benefits. The first one is that the transformation was pushed through a transformation pipe from
the TransformationManager. Inside this pipe the sensor transformation could be smoothened or
extrapolated for example, or another example would be to replay a recorded tracking data set
via this pipe. The second benefit is that the tracked sensor transformations are also available for
User objects from remote users, while the Controller only provides the local tracking data. Thus
using the tracking data from the User object is always recommended.
After the tracked sensor transformation was obtained it is again added to the platform center and
written to an coordinate system entity if available (what should be the case since we created them
previously).

void updateCoordinateSystems () {

TransformationData trackedUserTrans , sensorTrans;

// get the list of coordinate system entities (entity type ID = 10)

EntityType* coordinateSystemType = WorldDatabase :: getEntityTypeWithId (10);

const std::vector <Entity*>& entities = coordinateSystemType ->getInstanceList ();

// map the tracked user transformation to the first entity

if (entities.size() > 0) {

trackedUserTrans = localUser ->getTrackedUserTransformation ();

trackedUserTrans.position += COORDINATE_SYSTEM_CENTER;

entities [0]-> setEnvironmentTransformation(trackedUserTrans);

} // if

// map the tracked sensor transformations to the remaining entities

for (int i=0; i < numberOfSensors; i++) {

sensorTrans = localUser ->getTrackedSensorTransformation(i);

sensorTrans.position += COORDINATE_SYSTEM_CENTER;

if (i+1 < entities.size()) {

entities[i+1]-> setEnvironmentTransformation(sensorTrans);

} // if

} // for

} // updateCoordinateSystems

Listing 13.3: CodeSnippets4.cpp - Snippet-4-3 → GoingImmersive.cpp

92

http://doxygen.invrs.org//classEntityType.html
http://doxygen.invrs.org//classWorldDatabase.html
http://doxygen.invrs.org//classEntityType.html
http://doxygen.invrs.org//classUser.html
http://doxygen.invrs.org//classEntity.html
http://doxygen.invrs.org//classUser.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classUser.html
http://doxygen.invrs.org//classTransformationManager.html
http://doxygen.invrs.org//classUser.html
http://doxygen.invrs.org//classController.html
http://doxygen.invrs.org//classUser.html

Chapter 13 - Coordinate Systems 13.3. Summary

The last thing we still have to do is calling the update method continuously, thus adding the
method call into the update() method.

updateCoordinateSystems ();

Listing 13.4: CodeSnippets4.cpp - Snippet-4-4 → GoingImmersive.cpp

When starting the application now you should be able to see the transformations of all sensors
provided by your configured Controller.

Figure 13.2: The Final Going Immersive Application

13.3 Summary

In this chapter an introduction into the inVRs user coordinates was given. The different coordinate
systems used for the representation of the user as well as interaction purposes have been described.
Additionally the visualisation of these coordinate systems has been performed. The reader should
now be able to interact with VR input devices and multi-display setups. In combination with the
Medieval Town Tutorial full NVEs with articulated avatars can be created.

93

http://doxygen.invrs.org//classController.html

Chapter 14

Outlook

You have seen how to create an interactive NVE using OpenSG and inVRs. The medieval town
application has demonstrated how a fully functional application can be developed with less than
500 lines of C++ code and variety of XML configurations. By keeping the full flexibility and
control over the application this approach cannot only be used for rapid prototyping but rather
to create complex NVEs.
It is possible of course to enhance the framework or the developed application for example by
creating own navigation and interaction models. Through the free exchange of these components
it is possible to use constantly developed new features features without the need of recompiling
the application and just updating the framework.
The second part of the tutorial has shown how to use the inVRs framework with a variety of input
devices an displays. Wrapping functionality for faster application development was introduced and
basic setup as described in the first part of the tutorial was hidden inside a so called application
base. The use, as well as the configuration of the CAVE Scene Manager was explained to ease the
access to the OpenSG multi-display functionality. Afterwards the interconnection with arbitrary
input devices was illustrated. It was shown how to connect your own input devices with inVRs. As
an example an interconnection to VRPN as a rather generic input library was developed. In order
to display remote users correctly the concept of articulated avatars was introduced. These avatars
provided by the external Avatara package make use of tracking data to display head orientation
and hand position and orientation correctly. When displaying a user in an NVE many different
coordinate systems have to be configured which was shown in the end of the document.
The reader of this tutorial should now be able to configure and use inVRs to create networked
virtual environments. Further it was shown how to interconnect arbitrary multi-display systems
and input devices in order to create fully immersive NVEs. The introduced avatars can of course
be integrated as well into simple desktop applications. By simply changing the setup of the CAVE
Scene Manager setup and altering the used controller it is now easily possible to switch from
desktop application with a mouse keyboard control to installations likes CAVEs without altering
a single line of code or recompiling.
All available OpenSG specific tools can be used in conjunction with the CAVE Scene Manager in
order to provide stereoscopic output. When writing own OpenSG code an using the multi-display
functionality one has to be very careful with node locking as in general with OpenSG multi-display
applications. If the locking is not performed correctly the application might run on stable a single
display system and might crash afterwards when multi-display output is configured.
This tutorial has introduced only a few of the inVRs functionalities, but there is much more to
explore. Besides the provided core features of the SystemCore and the Navigation, Interaction,
and Network modules and the introduced external Avatara package a huge variety of different
modules and tools exist.

94

http://doxygen.invrs.org//classSystemCore.html
http://doxygen.invrs.org//classNavigation.html
http://doxygen.invrs.org//classInteraction.html
http://doxygen.invrs.org//classNetwork.html

Chapter 14 - Outlook 14.1. Tools

14.1 Tools

There are many. A large variety of tools exist which accompany the inVRs framework. These
tools are constantly made available and documented on the inVRs webpage.
The can be basically grouped in three different categories:

• Scene Graph Specific Tools

• External Tools

• Modules

The scene graph specific tools deal with fluid dynamics, particle systems [Ree83], free-form defor-
mation [SP86], 3D menus as well as the introduced skybox, collision maps and height maps. An
extremely valuable tool for developing immersive multi-display applications is the CAVESceneM-
anager [HJAA05] which has been introduced as well during the tutorial. The articulated Avatars
described in the second part of the tutorial are available as a standard OpenGL API, for OpenSG
and have specific inVRs support.
As an external tool a collaborative editor has been created, which allows the intuitive layout of a
VE. Using a GUI it is possible to create environments and freely arrange entities and tiles inside
these environments. Currently the editor is re-wirtten and re-desigend to support future exten-
sions of the inVRs framework.
The modules which have been developed so far cover 2D Physics, 3D Physics [ALV07], and anima-
tions. The free-form deformation tool can be loaded as a module as well and supports automatic
network communication when objects are deformed.

14.2 Funky Physics

In order to generate really vivid and lifelike VEs often physics simulation is incorporated. The
next tutorial will give an insight on how physics simulation can be done in inVRs.
This tutorial focuses on the inVRs physics module which is based on the Object Oriented Physics
Simulation (OOPS) developed by Roland Landertshamer as an implementation basis for his MSc
Thesis [Lan09]. The basics of rigid body dynamics will be introduced and the configuration of
physically simulated entities will be explained in depth in the usual hands-on way.

14.3 Documentation

The inVRs framework provides constantly updated documentation of the framework itself and the
additional tools. Currently an additional manual describing the configuration and the XML setup
of the main components is available. Additionally doxygen code documentation can be found
under http:
doxygen.invrs.org. With the next releases of the framework a programmers guide will be made
available which clearly describes the usage and the extension of the single core components.

14.4 Acknowledgments

The authors of the framework would like to thank the contributors of the core code, the tools as
well as people who helped administrating the project for their selfless efforts and achievements.
We would also like to thank all the users supporting us and evaluating the framework.
Considering the tools introduced in this tutorial special thanks go to their developers Adrian
Haffegee, Helmut Garstenauer and Martin Garstenauer. Thanks so much.

95

Bibliography

[Abe04] Oliver Abert. OpenSG Tutorial, 2004.

[AHHV04] Christoph Anthes, Paul Heinzlreiter, Adrian Haffegee, and Jens Volkert. Message
traffic in a distributed virtual environment for close-coupled collaboration. In In-
ternational Conference on Parallel and Distributed Computing Systems (PDCS ’04),
pages 484–490, San Francisco, CA, USA, September 2004. ISCA.

[AHHV05] Christoph Anthes, Adrian Haffegee, Paul Heinzlreiter, and Jens Volkert. A scalable
network architecture for closely coupled collaboration. Journal of Computing and
Informatics (CAI), 1(24):31–51, August 2005.

[AHKV04] Christoph Anthes, Paul Heinzlreiter, Gerhard Kurka, and Jens Volkert. Navigation
models for a flexible, multi-mode vr navigation framework. In ACM SIGGRAPH
on Virtual Reality Continuum and Its Applications in Industry (VRCAI ’04), pages
476–479, Singapore, June 2004. ACM Press.

[AHV04] Christoph Anthes, Paul Heinzlreiter, and Jens Volkert. An adaptive network archi-
tecture for close-coupled collaboration in distributed virtual environments. In ACM
SIGGRAPH on Virtual Reality Continuum and Its Applications in Industry (VRCAI
’04), pages 382–385, Singapore, June 2004. ACM Press.

[ALBV07] Christoph Anthes, Roland Landertshamer, Helmut Bressler, and Jens Volkert. Man-
aging transformations and events in networked virtual environments. In ACM Inter-
national MultiMedia Modeling Conference (MMM ’07), volume 4352 of Lecture Notes
in Computer Science (LNCS), pages 722–729, Singapore, January 2007. Springer.

[ALBV08] Christoph Anthes, Roland Landertshamer, Hemut Bressler, and Jens Volkert. De-
veloping vr applications for the grid. In European Conference on Parallel and Dis-
tributed Computing (Euro-Par ’08), Las Palmas de Gran Canaria, Spain, August
2008. Springer.

[ALV07] Christoph Anthes, Roland Landertshamer, and Jens Volkert. Physically–based in-
teraction for networked virtual environments. In Yong Shi, Geert Dick van Albada,
Jack Dongarra, and Peter M. A. Sloot, editors, International Conference on Com-
putational Science (ICCS ’07), volume 4488 of Lecture Notes in Computer Science
(LNCS), pages 776–783, Beijing, China, May 2007. Springer.

[AV06] Christoph Anthes and Jens Volkert. invrs - a framework for building interactive
networked virtual reality systems. In Michael Gerndt and Dieter Kranzlmüller, edi-
tors, International Conference on High Performance Computing and Communications
(HPCC ’06), volume 4208 of Lecture Notes in Computer Science (LNCS), pages 894–
904, Munich, Germany, September 2006. Springer.

[AWL+07] Christoph Anthes, Alexander Wilhelm, Roland Landertshamer, Helmut Bressler, and
Jens Volkert. Net’?O’?Drom – An Example for the Development of Networked Im-
mersive VR Applications. In Yong Shi, Geert Dick van Albada, Jack Dongarra, and

96

Bibliography

Peter M. A. Sloot, editors, International Conference on Computational Science (ICCS
’07), volume 4488 of Lecture Notes in Computer Science (LNCS), pages 752–759, Bei-
jing, China, May 2007. Springer.

[BH97] Douglas A. Bowman and Larry F. Hodges. An evaluation of techniques for grabbing
and manipulating remote objects in immersive virtual environments. In ACM Sym-
posium on Interactive 3D Graphics (SI3D ’97), pages 35–38, Providence, RI, USA,
April 1997. ACM Press.

[BLAV06] Helmut Bressler, Roland Landertshamer, Christoph Anthes, and Jens Volkert. An
efficient physics engine for virtual worlds. In medi@terra ’06, pages 152–158, Athens,
Greece, October 2006.

[CNSD+92] Carolina Cruz-Neira, Daniel J. Sandin, Thomas A. Defanti, Robert V. Kenyon, and
John C. Hart. The cave: Audio visual experience automatic virtual environment.
Communications of the ACM, 35(6):64–72, June 1992.

[CPS+97] Marek Czernuszenko, Dave Pape, Daniel J. Sandin, Thomas A. DeFanti, Gregory L.
Dawe, and Maxine D. Brown. The immersadesk and infinity wall projection-based
virtual reality displays. Computer Graphics, 31(2):46–49, May 1997.

[Haf04] Adrian Haffegee. Development of a scalable network topology supporting close-
coupled collaboration. Master’s thesis, University of Reading, UK, Reading, UK,
2004.

[HJAA05] Adrian Haffegee, Ronan Jamieson, Christoph Anthes, and Vassil N. Alexandrov. Tools
for collaborative vr application development. In Vaidy S. Sunderam, Geert Dick van
Albada, Peter M. A. Sloot, and Jack J. Dongarra, editors, International Conference
on Computational Science (ICCS ’05), volume 3516 of Lecture Notes in Computer
Science (LNCS), pages 350–358, Atlanta, GA, USA, May 2005. Springer.

[KF94] Wolfgang Krueger and Bernd Fröhlich. The responsive workbench. IEEE Computer
Graphics and Applications, 14(3):12–15, 1994.

[Lan09] Roland Landertshamer. Physics simulation in networked virtual environments. Mas-
ter’s thesis, Institut für Graphische und Parallele Datenverarbeitung, Johannes Kepler
University Linz, Linz, Austria, August 2009.

[PBWI96] Ivan Poupyrev, Mark Billinghurst, Suzanne Weghorst, and Tadao Ichikawa. The go-
go interaction technique: Non-linear mapping for direct manipulation in vr. In ACM
Symposium on User Interface Software and Technology (UIST ’96), pages 79–80,
Seattle, WA, USA, November 1996. ACM Press.

[Ree83] William T. Reeves. Particle systems - a technique for modeling a class of fuzzy objects.
ACM Transactions on Graphics, 2(2):93–108, April 1983.

[Rei02] Dirk Reiners. OpenSG: A Scene Graph System for Flexible and Efficient Realtime
Rendering for Virtual and Augmented Reality Applications. PhD thesis, Technische
Universität Darmstadt, Mai 2002.

[RS01] Gerhard Reitmayr and Dieter Schmalstieg. An open software architecture for virtual
reality interaction. In ACM Symposium on Virtual Reality Software and Technology
(VRST ’01), pages 47–54, Alberta, Canada, November 2001. ACM Press.

[RS05] Gerhard Reitmayr and Dieter Schmalstieg. Opentracker: A flexible software design
for three-dimensional interaction. Virtual Reality, 9(1):79–92, December 2005.

97

Bibliography

[SG02] Andreas Simon and Martin Göbel. The i-cone - a panoramic display system for virtual
environments. In Pacific Conference on Computer Graphics and Applications (PG
’02), pages 3–7, Beijing, China, October 2002. IEEE Computer Society.

[Sho85] Ken Shoemake. Animating rotations with quaternion curves. In Pat Cole, Robert
Heilman, and Brian A. Barsky, editors, International Conference on Computer Graph-
ics and Interactive Techniques (SIGGRAPH ’85), pages 245–254, July 1985.

[SP86] Thomas W. Sederberg and Scott R. Parry. Free-form deformation of solid geometric
models. ACM SIGGRAPH Computer Graphics, 20(4):151–160, August 1986.

[Sut68] Ivan E. Sutherland. A head-mounted three-dimensional display. In Fall Joint Com-
puter Conference AFIPS Conference, pages 757–764, Fall 1968.

[THS+01] Russell M. Taylor II, Thomas C. Hudson, Adam Seeger, Hans Weber, Jeffrey Juliano,
and Aron T. Helser. Vrpn: A device-independent, network-transparent vr peripheral
system. In ACM Symposium on Virtual Reality Software and Technology (VRST ’01),
pages 55–61, Alberta, Canada, November 2001. ACM Press.

98

List of Figures

1.1 The Tutorial Town . 3
1.2 The Going Immersive Application . 3

2.1 The Basic inVRs Components . 6
2.2 The Transformation Hierarchy of the World Database 8

3.1 The inVRs Configuration Hierarchy . 12
3.2 The World Database seen from Top . 16
3.3 The virtual medieval town . 18

4.1 An Example Skybox . 27
4.2 The medieval town under a blue sky . 28

5.1 An Example Height Map . 29
5.2 A Collision Map . 30
5.3 Generation of a Collision Map . 31
5.4 The medieval town under a blue sky . 34

6.1 The Interaction State Machine . 35
6.2 Interacting with Entities . 40

7.1 Interacting in a networked virtual environment . 44

8.1 A spinning windmill wheel . 48

9.1 The basic Going Immersive application . 57

10.1 A CAVE and an HMD . 58
10.2 A Curved Screen and a Powerwall . 59
10.3 Render server window (front) and control window (inVRs) 64

11.1 Some Typical VR Input devices . 66
11.2 An Example Mapping of the Input Interface . 67

12.1 The Avatara avatar . 88

13.1 Coordinate Systems of the User . 89
13.2 The Final Going Immersive Application . 93

14.1 Open CMake and set Tutorial paths . 106
14.2 Select target project type . 106
14.3 Error message when inVRs installation was not found 107
14.4 Finalize configuration . 107
14.5 Generate build files . 108

99

List of Figures

14.6 Build application . 108

100

Listings

3.1 MedievalTown.cpp - Top Part of main() . 11
3.2 MedievalTown.cpp - Bottom Part of main() . 11
3.3 general.xml . 12
3.4 CodeFile1.cpp - Snippet-1-1 → MedievalTown.cpp 13
3.5 CodeFile1.cpp - Snippet-1-2 → MedievalTown.cpp 14
3.6 CodeFile1.cpp - Snippet-1-3 → MedievalTown.cpp 14
3.7 CodeFile1.cpp - Snippet-1-4 → MedievalTown.cpp 15
3.8 general.xml - Enter Path to inVRs Libraries . 15
3.9 worldDatabase.xml . 16
3.10 entities.xml . 16
3.11 tiles.xml . 17
3.12 environmentLayout.xml . 17
3.13 environment.xml . 18
4.1 CodeFile2.cpp - Snippet-2-1 → MedievalTown.cpp 20
4.2 Snippets2.xml - Snippet-2-1 → general.xml . 21
4.3 Snippets2.xml - Snippet-2-2 → general.xml . 21
4.4 Snippets2.xml - Snippet-2-3 → general.xml . 21
4.5 CodeFile2.cpp - Snippet-2-2 → MedievalTown.cpp 21
4.6 CodeFile2.cpp - Snippet-2-3 → MedievalTown.cpp 22
4.7 CodeFile2.cpp - Snippet-2-4 → MedievalTown.cpp 22
4.8 Snippets2.xml - Snippet2-4 → userDatabase.xml 23
4.9 Snippets2.xml - Snippet2-5 → modules.xml . 23
4.10 CodeFile2.cpp - Snippet-2-5 → MedievalTown.cpp 23
4.11 CodeFile2.cpp - Snippet-2-6 → MedievalTown.cpp 24
4.12 CodeFile2.cpp - Snippet-2-7 → MedievalTown.cpp 24
4.13 CodeFile2.cpp - Snippet-2-8 → MedievalTown.cpp 24
4.14 CodeFile2.cpp - Snippet-2-9 → MedievalTown.cpp 25
4.15 CodeFile2.cpp - Snippet-2-10 → MedievalTown.cpp 25
4.16 CodeFile2.cpp - Snippet-2-11 → MedievalTown.cpp 25
4.17 CodeFile2.cpp - Snippet-2-12 → MedievalTown.cpp 25
4.18 CodeFile2.cpp - Snippet-2-13 → MedievalTown.cpp 25
4.19 CodeFile2.cpp - Snippet-2-14 → MedievalTown.cpp 26
4.20 navigation.xml . 26
4.21 CodeFile2.cpp - Snippet-2-15 → MedievalTown.cpp 27
4.22 CodeFile2.cpp - Snippet-2-16 → MedievalTown.cpp 27
4.23 CodeFile2.cpp - Snippet-2-17 → MedievalTown.cpp 27
5.1 CodeFile3.cpp - Snippet-3-1 → MedievalTown.cpp 31
5.2 modifiers.xml . 32
5.3 Snippets3.xml - Snippet-3-1 → modifiers.xml . 33
5.4 Snippets3.xml - Snippet-3-2 → modifiers.xml . 33
5.5 Snippets3.xml - Snippet-3-3 → modifiers.xml . 33
5.6 CodeFile3.cpp - Snippet-3-2 → MedievalTown.cpp 33

101

Listings

5.7 CodeFile3.cpp - Snippet-3-3 → MedievalTown.cpp 34
6.1 interaction.xml . 36
6.2 Snippets4.xml - Snippet-4-1 → general.xml . 37
6.3 Snippets4.xml - Snippet-4-2 → modules.xml . 37
6.4 CodeFile4.cpp - Snippet-4-1 → MedievalTown.cpp 37
6.5 Snippets4.xml - Snippet-4-3 → userDatabase.xml 38
6.6 homerCursorModel.xml . 38
6.7 Snippets4.xml - Snippet-4-4 → modifiers.xml . 38
6.8 Snippets4.xml - Snippet-4-5 → modifiers.xml . 39
6.9 Snippets4.xml - Snippet-4-6 → general.xml . 39
6.10 CodeFile4.cpp - Snippet-4-2 → MedievalTown.cpp 39
7.1 Snippets5.xml - Snippet-5-1 → modules.xml . 41
7.2 Snippets5.xml - Snippet-5-2 → modules.xml . 41
7.3 CodeFile5.cpp - Snippet-5-1 → MedievalTown.cpp 42
7.4 CodeFile5.cpp - Snippet-5-2 → MedievalTown.cpp 42
7.5 CodeFile5.cpp - Snippet-5-3 → MedievalTown.cpp 42
7.6 network.xml . 42
7.7 Snippets5.xml - Snippet-5-3 → modifiers.xml . 43
7.8 Snippets5.xml - Snippet-5-4 → modifiers.xml . 43
7.9 Snippets5.xml - Snippet-5-5 → modifiers.xml . 43
7.10 avatar.xml . 44
8.1 CodeFile6.cpp - Snippet-6-1 - Top Part → MedievalTown.cpp 46
8.2 CodeFile6.cpp - Snippet-6-1 - Bottom Part → MedievalTown.cpp 47
9.1 GoingImmersive.cpp - Top Part of application . 54
9.2 GoingImmersive.cpp - Top Part of class . 55
9.3 GoingImmersive.cpp - Destructor . 55
9.4 GoingImmersive.cpp - getConfigFile() . 55
9.5 GoingImmersive.cpp - initialize() . 56
9.6 GoingImmersive.cpp - display() and cleanup() . 56
9.7 GoingImmersive.cpp - main method . 56
9.8 general.xml - Enter Path to inVRs Libraries . 57
10.1 GoingImmersive.cpp . 60
10.2 XmlSnippets1.xml - Snippet1-1 → general.xml . 63
10.3 XmlSnippets1.xml - Snippet1-2 → general.xml . 63
10.4 XmlSnippets1.xml - Snippet1-3 → general.xml . 63
10.5 CodeSnippets1.cpp - Snippet-1-1 → GoingImmersive.cpp 64
11.1 VrpnDevice.h . 69
11.2 VrpnDevice.cpp - Constructor . 73
11.3 VrpnDevice.cpp - initializeDevice() . 73
11.4 VrpnDevice.cpp - static VRPN callback methods 74
11.5 VrpnDevice.cpp - update methods . 75
11.6 VrpnDevice.cpp - update() . 76
11.7 VrpnDevice.cpp - accessor methods for input data 76
11.8 VrpnDevice.cpp - VrpnDeviceFactory::create() . 78
11.9 CodeSnippets2.cpp - Snippet-2-1 → GoingImmersive.cpp 79
11.10CodeSnippets2.cpp - Snippet-2-2 → GoingImmersive.cpp 79
11.11VrpnController.xml . 80
11.12XmlSnippets2.xml - Snippet2-1 → inputInterface.xml 80
11.13wandNavigation.xml . 81
11.14XmlSnippets2.xml - Snippet2-2 → modules.xml . 81
12.1 simpleAvatar.xml . 83
12.2 undead.xml . 84
12.3 CodeSnippets3.cpp - Snippet-3-1 → GoingImmersive.cpp 85
12.4 CodeSnippets3.cpp - Snippet-3-2 → GoingImmersive.cpp 85

102

Listings

12.5 XmlSnippets3.xml - Snippet 3-1 → userDatabase.xml 85
12.6 CodeSnippets3.cpp - Snippet-3-3 → GoingImmersive.cpp 85
12.7 CodeSnippets3.cpp - Snippet-3-4 → GoingImmersive.cpp 85
12.8 CodeSnippets3.cpp - Snippet-3-5 → GoingImmersive.cpp 86
12.9 CodeSnippets3.cpp - Snippet-3-6 → GoingImmersive.cpp 86
12.10CodeSnippets3.cpp - Snippet-3-7 → GoingImmersive.cpp 86
12.11MouseKeybSensorController.xml . 87
13.1 CodeSnippets4.cpp - Snippet-4-1 → GoingImmersive.cpp 91
13.2 CodeSnippets4.cpp - Snippet-4-2 → GoingImmersive.cpp 91
13.3 CodeSnippets4.cpp - Snippet-4-3 → GoingImmersive.cpp 92
13.4 CodeSnippets4.cpp - Snippet-4-4 → GoingImmersive.cpp 93

103

Appendix

Used Models

Author: gerzi-3d-art
Model: chapel.zip, windmill.zip
Source: http://www.turbosquid.com/

Author: medievalworlds
Model: fw65 lowpoly.zip, fw43 lowpoly.zip, well4.zip
Source: http://www.turbosquid.com/

Author: TiZeta
Model: Low Poly Undead Male Model
Avatar: http://e2-productions.com/

Author: amethyst7@gotdoofed.com
Skybox: LostAtSea
Source: http://amethyst7.gotdoofed.com/

Installation Instructions

These installation instructions describe how to generate the platform specific build files (e.g.
Visual Studio Projects or Unix Makefiles) using the CMake program. The instructions apply to
both tutorial applications (MedievalTown and GoingImmersive).

Prerequisites

To be able to build the tutorial applications (MedievalTown and GoingImmersive) inVRs has to
be built and installed. For downloading the latest source distribution of inVRs please visit the
inVRs homepage at:

• http://trac.invrs.org/wiki/inVRsInstallation

On this page you can also find a prebuilt package of the latest inVRs version for Visual Studio
2005 which includes also all libraries which are required by inVRs (also OpenSG). Note that this
version is not compatible with other Versions of Microsoft Visual Studio. For the installation
of the prebuilt version simply download it from the homepage and unzip it somewhere on your
harddrive (e.g. on C:\inVRs).
For details on building inVRs from source please have a look at the inVRs installation instructions
which are also available on the inVRs homepage.
The following packages must be installed for building inVRs (as well as the tutorial applications):

• OpenSG - http://www.opensg.org

• CMake - http://www.cmake.org

104

http://www.turbosquid.com/
http://www.turbosquid.com/
http://e2-productions.com/
http://amethyst7.gotdoofed.com/
http://trac.invrs.org/wiki/inVRsInstallation
http://www.opensg.org
http://www.cmake.org

Listings

Additional Prerequisites for Microsoft Windows

For building the tutorial applications on a Windows platform you need either Microsoft Visual
Studio 2003 or Microsoft Visual Studio 2005. Other versions of Visual Studio won’t work because
the OpenSG version used by inVRs is not available for these IDEs.
These instructions were tested with following Packages:

• Microsoft Visual C++ 2005 Express

• Microsoft Windows Server 2003 R2 Platform SDK

For instructions how to configure Visual C++ for Platform SDK compatibility see:

• http://msdn.microsoft.com/en-us/library/ms235626(VS.80).aspx

Step 1 (OPTIONAL): Configure Application

For the generation of the build files CMake needs to know where your inVRs installation can be
found on your local hard drive. In order to simplify the search process for this folder you can
specify this folder in the file user.cmake:

DEFINES INVRS DIRECTORY

By uncommenting the following line you can specify the path where your INVRS

installation is located.

If this entry is not set cmake tries to find the path by itself.

set (inVRs_ROOT_DIR C:/inVRs)

Please take care to either use a single slash (“/”) or two backslash signs (“\\”) as separators,
because a single backslash causes cmake to expect an escape sequence. Additionally you need
to place an escape sign before each space-character in your folder names (if you have some), e.g.
C:/Program\Files/inVRs

Step 2: Generate build files with CMake-GUI

These instructions require the CMake-GUI to be available on your system. Current CMake versions
provide the cmake-GUI application for most supported platforms. If you don’t have the GUI
version available you can also use the console tool ccmake or you can call the cmake command
directly.
First open the CMake GUI and set the paths to the Tutorial project:

105

http://msdn.microsoft.com/en-us/library/ms235626(VS.80).aspx

Listings

Figure 14.1: Open CMake and set Tutorial paths

Press Configure and select as target build type the desired build system. On Microsoft Windows
for example you may use Microsoft Visual Studio 2005 (or Microsoft Visual Studio 2003, depending
on your used IDE), on Linux or Mac OSX you should use Unix Makefiles.

Figure 14.2: Select target project type

During the configuration CMake may stop printing an error message which says that the inVRs
installation was not found on your system (green circle in the picture below):
If this happens you have to manually enter the path of your inVRs installation (note that inVRs
must be installed in this directory, so when you build it from source also ensure that you build
the INSTALL target of inVRs).
Afterwards press Configure again:
Finally if the configuration process was successfull you can generate your build system files by

106

Listings

Figure 14.3: Error message when inVRs installation was not found

Figure 14.4: Finalize configuration

pressing the Generate button:
The generated build files (Makefiles, or Visual Studio projects) can be found in the subfolder build.

Windows: Open Tutorial Project in Visual Studio

Open Visual Studio and open the tutorial project, e.g. <MedievalTown>/build/MedievalTown.

sln.
To create the application build the target MedievalTown or ALL BUILD.

107

Listings

Figure 14.5: Generate build files

Figure 14.6: Build application

Linux, Mac OSX: Build sources using Makefiles

For building the tutorials using the generated Unix Makefiles enter the build subdirectory and call
make:

from within tutorial folder

cd build

108

Listings

make

Running the application

To start the application open the file startTutorial.bat on Windows or the file startTutorial.
sh on Linux or Mac OSX in an editor. In the file you have to configure the path to your OpenSG
and your inVRs installation. The paths are needed in the following lines in order to set the library
paths needed by the application in order to find the dll-files:

SET OPENSG_DIR=C:\\Programme\\OpenSG

After you entered the correct paths you can start the application by executing the batch file.

109

	Abstract
	Contents
	Introduction
	Tutorial Overview
	Outline

	Architecture Overview
	System Core
	Databases
	Communication

	Interfaces
	Input Interface
	Output Interface

	Modules
	Navigation
	Interaction
	Network

	Basic Application Development
	Using OpenSG and GLUT
	Configuring inVRs
	Working with the WorldDatabase
	Summary

	Navigation and Skybox
	Adding inVRs Components
	Navigation
	Managing User Input

	Skybox
	Summary

	Transformation Management
	Height and Collision Maps
	Generating Collision Maps
	Generating Height Maps

	Using Modifiers and Pipes
	Summary

	Interaction
	State Machine
	Implementing Interaction
	Events
	Summary

	Using Network Communication
	Concepts
	Setting up the Network Communication
	Transmitting Data
	Displaying Avatars
	Execution
	Summary

	Developing own Application Logic
	Input and Animations
	Summary

	Wrapping Functionality
	Using the ApplicationBase
	Using the OpenSGApplicationBase
	Initial Tutorial Application
	Summary

	Immersive Displays
	Different Types of Immersive Displays
	Using the CAVE Scene Manager
	Configuring the CAVE Scene Manager
	Displaying Virtual Environments
	Summary

	Using the Input Interface
	Different Types of Input Devices
	Mapping Input on the Abstract Controller
	Writing own Devices for the Abstract Controller
	Interconnecting own Devices with inVRs
	Summary

	Working with Avatars
	Modelling and Exporting Avatars
	Using Avatara
	Integrating an Avatara Avatar into the tutorial
	Testing the avatar without a tracking system
	Summary

	Coordinate Systems
	User Coordinates
	Visualizing Transformations
	Summary

	Outlook
	Tools
	Funky Physics
	Documentation
	Acknowledgments

	Bibliography
	List of Figures
	Listings
	Appendix

