
–

Configuring the inVRs Framework

Christoph Anthes and Roland Landertshamer

September 14, 2009

Abstract

The inVRs framework is a complex software framework with complex configuration architecture.
To ease the creation of inVRs applications this document provides a deep inside in the configura-
tion mechanisms. It should be used as a manual for configuring own inVRs applications.
The manual introduces all XML based configuration files of the basic inVRs components. Ad-
ditional modules or tools might have to be configured in a different manner. Details on these
additional components can be found in their specific manuals.

i

Contents

Abstract i

Contents i

1 Introduction 1
1.1 Configuration Overview . 1
1.2 Concepts and Considerations . 2

1.2.1 Argument Vector . 2
1.2.2 Transformation Node . 3
1.2.3 Representation Node . 3
1.2.4 Naming . 3
1.2.5 File References . 3
1.2.6 Versioning . 4

1.3 Outline . 4

2 System Core and General Setup 6
2.1 Modules . 8
2.2 System Core . 9
2.3 User Database . 10

2.3.1 Avatar . 10
2.3.2 Cursor Transformation Model . 12
2.3.3 User Transformation Model . 14
2.3.4 Cursor Representation . 15

2.4 World Database . 16
2.4.1 Entity Types . 17
2.4.2 Tile . 18
2.4.3 Environment and Environment Layout . 18

2.5 Event Manager . 20
2.6 Transformation Manager . 20

2.6.1 Modifiers . 22
2.6.2 Mergers . 27

2.7 Summary . 27

3 Input Interface 28
3.1 Controller Manager . 28

3.1.1 Supported Devices . 30
3.2 Summary . 32

4 Output Interface 33
4.1 OpenSG Scene Graph Interface . 33
4.2 OpenSceneGraph Scene Graph Interface . 34
4.3 Audio Interface . 34

ii

Contents Contents

4.4 Summary . 34

5 Navigation Module 35
5.1 Navigation Models . 36

5.1.1 Translation Models . 36
5.1.2 Orientation Models . 37
5.1.3 Speed Models . 38

5.2 Summary . 40

6 Interaction Module 41
6.1 Interaction Models . 42

6.1.1 Idle Action Models . 42
6.1.2 Selection Action Models . 43
6.1.3 Manipulation Action Models . 43
6.1.4 Selection Change and Unselection Change Models 43
6.1.5 Manipulation Confirmation and Termination Models 44

6.2 Summary . 44

7 Network Module 45
7.1 Summary . 45

8 Outlook 46
8.1 Future Work . 46
8.2 Acknowledgments . 47

Bibliography 48

List of Figures 50

Listings 51

Appendix 53

iii

Chapter 1

Introduction

Although the inVRs [AV06] framework is able to take away a fair bit of coding from the application
developer it requires initially a significant amount of configuration effort. An ordinary inVRs
application makes use of roughly 20 to 25 configuration files of which most are fortunately rather
generic. This document describes the setup of the individual framework components.
The configuration of the framework is performed in an eXtensible Markup Language (XML)
format, which is described in detail in this manual. The according Document Type Definition
(DTD) files for checking the correctness of configuration can be found in the Appendix or online
under: http://dtd.invrs.org. These DTD files should be used for verification of the inVRs
configuration. Verification of the configuration files should be done externally before application
execution.

1.1 Configuration Overview

The hierarchy which is typically used for the configuration files of the inVRs framework is illus-
trated in Figure 1.1. It is not to be used only on a file basis. In general it is recommended to have
a separate sub-directory for each of the file types illustrated as boxes in the diagram.

Figure 1.1: The inVRs Configuration Hierarchy

1

http://dtd.invrs.org

Chapter 1 - Introduction 1.2. Concepts and Considerations

It is often desirable to have different configurations which can be easily exchanged stored in the
same directory. Common use cases are the exchange of the whole navigation or interaction setup,
the controllers or displays. Four main categories of configuration files exist:

• General
The general configuration as illustrated in yellow, takes care of the path setting for the
configuration as well as the content used by inVRs applications. It provides links to the
other used inVRs components.

• Interfaces
The interfaces, drawn in grey, are subdivided into the input interface which takes care of the
input devices used to control the applications and the output interface handling the output
devices which are used to display the virtual environment.

• Modules
The modules, shown in light blue, consist by default of the navigation module, the interaction
module and the network module. Additional modules as for example for physics simulation
would be configured here as well.

• Core components
The core components, colored in dark blue, are used for data storage and message handling
inside the framework. The user database and the world database store information about
the virtual world, while the transformation manager and the event manager take care of
distribution between the interfaces, modules and the other core components.

Additional user-defined configurations which are dedicated to an application should be stored in
a separate directory.

1.2 Concepts and Considerations

Some basic concepts used for the configuration of the inVRs framework will be explained before
we take a close look at the specific configuration files.

1.2.1 Argument Vector

The argument vector, implemented in the class ArgumentVector, describes an undefined amount of
attributes belonging to the parent XML node. It provides a list of triples where the first attribute
key indicates the name of the argument, the second attribute identified by type is the datatype
of the argument and the last attribute of the <argument>-node value provides the actual value
for the argument specified in key, which has to be of the previously defined datatype.
Argument vectors are often used for the configuration of exchangeable components like navigation
models and interaction models.

<arguments >

<arg key="animationSpeed" type="float" value="12"/>

<arg key="forwardThreshold" type="float" value="0.1"/>

<arg key="backwardThreshold" type="float" value="0.1"/>

</arguments >

Listing 1.1: Example of an Argument Vector

2

http://www.inVRs.org/doxygen//classArgumentVector.html

Chapter 1 - Introduction 1.2. Concepts and Considerations

1.2.2 Transformation Node

To perform geometrical transformations a transformation node is used in the inVRs configura-
tion. This node provides sub-nodes for translation, rotation, scale and scale orientation. It is
implemented in the class TransformationData.

<transformation >

<translation x="0" y="0" z="0"/>

<rotation x="1" y="0" z="0" angleDeg=" -90"/>

<scale x=" -0.08" y=" -0.08" z="0.08"/>

</transformation >

Listing 1.2: Example for a Transformation Node

Each of the sub-nodes contains float attributes for x, y and z. The <rotation>-node configures
a quaternion based rotation using an additional angle. This angle can either be given by the
attribute angleDeg or alternatively angleRad determining whether the angle is defined in degrees
or radiant.

1.2.3 Representation Node

Another common node is the <representation>-node, which contains data about a model and an
additional transformation which are to be associated with the parent node. The node can contain
the optional attribute copy describing whether the model can be copied1 or whether just a reference
to the model is given. It is implemented in the ModelInterface of the output interface.
The <file>-sub-node consists of two attributes. The first attribute type contains information
about the file type of the 3D model which is to be associated, while the second attribute name
identifies the filename of the model.

<representation >

<file type="VRML97" name="tie.wrl" />

<transformation >

<translation x="0" y="0" z="0" />

<rotation x="0" y="1" z="0" angleDeg="0" />

<scale x="1" y="1" z="1" />

</transformation >

</representation >

Listing 1.3: Example for a Representation Node

1.2.4 Naming

Some naming conventions are to be kept for configuring the framework. Typically the compo-
nent or sub-component of the framework has the same name as the main node of its according
configuration file. The name of the node should be identical or similar to the class name of the
implementation of the component.
All node names are to begin with lower case letter. The names of the attributes are always written
lower-case. More details on the naming aspect are given in the Extending the inVRs Framework
Manual.

1.2.5 File References

In theory it would be possible to structure the configuration of the framework in a single file or
at least fewer files than the ones which are used right now. When using such an implementation

1when OpenSG is used as a scene graph this operation is implemented as a deep clone

3

http://www.inVRs.org/doxygen//classTransformationData.html
http://www.inVRs.org/doxygen//classModelInterface.html

Chapter 1 - Introduction 1.3. Outline

minor changes could cause significant rewriting of the file. For example if a navigation technique,
which is used in an application should be exchanged completely the whole model setup would have
to be exchanged. Thus the components often make use of references to other files.
In this case it is possible to change parts of the configuration files, which makes the application
configuration extremely flexible and reusable. The users are able to create repositories of their
configurations and expand them over the time.
On the other hand it is hard for inexperienced users to keep an overview on the configuration
without the help of this document.

1.2.6 Versioning

Each configuration file or DTD carries a version of the current inVRs release. From the version 1.0
alpha4 on it is possible to upgrade configuration files automatically to the current inVRs version.
This update mechanism has to be manually triggered in the general configuration which will be
explained in the following chapter.
To identify the correct version each top node of the inVRs configuration files contains an attribute
version which keeps the current version number.

1.3 Outline

The chapters of this document cover the following topics:

• Chapter 2 - System Core
The configuration of the system core with its sub-components the world database the user
database and the transformation manager is described in this chapter. The structure of
the user database and the world database lead to a variety of sub-configurations which are
described as well.
To configure the transformation manager a variety of possibilities exist. These configuration
components are described in detail as well.

• Chapter 3 - Input Interface
Arbitrary devices can be interconnected to inVRs. The data gathered by these devices is
stored inside an abstract controller which is described in this chapter. All supported input
libraries with their specifics are briefly introduced.

• Chapter 4 - Output Interface
In order to render graphics or audio output inVRs makes use of an output interface. The
configuration of this interface is provided in this chapter.

• Chapter 5 - Navigation Module
The navigation module implements navigation by composing three different models for di-
rection, orientation, and speed into a resulting navigation technique. The configuration of
the available inVRs standard models including their parameterization is described in this
chapter.

• Chapter 6 - Interaction Module
The interaction module of inVRs is implemented as an automaton. The configuration of this
automaton is given by setting up state transition functions in order to implement interaction
techniques.

• Chapter 7 - Network Module
The configuration of the standard network module of the inVRs framework is described
briefly in this chapter.

4

Chapter 1 - Introduction 1.3. Outline

• Chapter 8 - Outlook
The final chapter outlook recaptures the main aspects of this document and offers suggestions
for the creation of own application specific configurations as well as the extensions of the
already provided configurations.

5

Chapter 2

System Core and General Setup

The first configuration file you probably want to modify for your specific setup of an application is
the general configuration which provides a basic path setup as well as the links to the configurations
of the inVRs specific components as well as the user defined components. It is parsed and evaluated
by the Configuration class of the SystemCore.
The two main nodes are:

• <general>
The <general>-node can contain up to six sub-nodes which provide the filenames of the
configuration files of the component types which are to be registered during the startup
of an inVRs application. Additionally the configuration for the application base, which is
wrapping setup functionality, and configuration upgrading is stored in this node.
The sub-nodes of the <general>-node always contain <option>-sub-nodes which have at-
tributes consisting of the couples of key and value. The attribute key describes the name
of the attribute while value defines its contents.

– <applicationBase>
In the <option>-node with the key profilerLogFile of the application base the name
of a log file used for profiling an inVRs application can be specified. The log file is
stored in the directory where your inVRs application is executed. This file contains
information about the run-time of several components. More detail will be provided in
the Extending the inVRs Framework manual.

– <openSGApplicationBase>
In case OpenSG [Rei02] is used as a scene graph this node should be used. When the
key useCSM is set to true the CAVESceneManager will be used. It acts as a wrapper
for OpenSG multi-display support. More detail on this tool is provided in the Going
Immersive Tutorial. The name of the configuration file of the CAVESceneManager
[HJAA05] is specified in the value attribute of the according csmConfigFile key.

– <interfaces>
The <interfaces>-node contains typically two different <option>-sub-nodes which are
identified by the two key attributes with the values inputInterfaceConfiguration
and outputInterfaceConfiguration. These two keys take the names of the configu-
ration files of the according interfaces as an attribute.

– <modules>
The <modules>-node contains one sub-node which can be identified by the attribute
modulesConfiguration. This attribute should contain the name of the configuration
file for the modules as value.

– <systemCore>
The <systemCore>-node contains a single sub-node which is identified by the key

6

http://www.inVRs.org/doxygen//classConfiguration.html
http://www.inVRs.org/doxygen//classSystemCore.html

Chapter 2 - System Core and General Setup

systemCoreConfiguration. The name of the system core configuration file is stored
in the according value.

– <XmlConfigLoader>
In order to keep downward compatibility the XML parser of the inVRs framework allows
to update deprecated configuration files to current versions. If the key updateFiles
is set to true and a newer configuration version is available the configuration files that
were parsed will be updated. Watch out when using this option. Currently inVRs does
not transcribe the comments from old configuration files to the updated files.

• <paths>
The <paths>-node contains the whole path setup for the inVRs framework in its sub-nodes.
It can contain again two different types of sub-nodes.

– <root>
The <root>-node describes where the root path for the inVRs application is to be set.
Most paths that are used are considered to be relative to the inVRs root path.

– <path>
Different categories of paths are common; they are all set relative to the root path.
Typically the following categories of paths exist: world database, user database, trans-
formation manager, interfaces, modules and models. Each <path>-node takes two
attributes, name describing the name of the path and directory providing the actual
path. More detail on this concept was provided in the introductory chapter.

Most inVRs applications make use of the application base concept as described in detail in the
Going Immersive Tutorial. Additionally all three component types, the interfaces, modules and
the core are used in an application. The following example shows a typical inVRs configuration
file for general.xml.

<?xml version="1.0" encoding="UTF -8"?>

<!DOCTYPE generalConfig SYSTEM "http: //dtd.invrs.org/generalConfig_v1 .0a4.dtd">

<generalConfig version="1.0a4">

<!-- This is the configuration for the inVRs Framework -->

<general >

<ApplicationBase >

<option key="profilerLogFile" value="profile.log" />

</ApplicationBase >

<OpenSGApplicationBase >

<option key="useCSM" value="true"/>

<option key="csmConfigFile" value="cave.config"/>

</OpenSGApplicationBase >

<Interfaces >

<option key="inputInterfaceConfiguration" value="inputInterface.xml" />

<option key="outputInterfaceConfiguration" value="outputInterface.xml" />

</Interfaces >

<Modules >

<option key="modulesConfiguration" value="modules.xml" />

</Modules >

<SystemCore >

<option key="systemCoreConfiguration" value="systemCore.xml"/>

</SystemCore >

<XmlConfigLoader >

<option key="updateFiles" value="true"/>

</XmlConfigLoader >

</general >

<paths>

<root directory="./" />

<path name="SystemCoreConfiguration" directory="final/config/systemcore/" />

<path name="Plugins" directory="../../ lib"/>

<path name="ModulesConfiguration" directory="final/config/modules/" />

<path name="InputInterfaceConfiguration"

7

Chapter 2 - System Core and General Setup 2.1. Modules

directory="final/config/inputinterface" />

<path name="OutputInterfaceConfiguration"

directory="final/config/outputinterface" />

<!-- Paths for World DB Datastructure -->

<path name="WorldConfiguration"

directory="final/config/systemcore/worlddatabase/" />

<path name="EnvironmentConfiguration"

directory="final/config/systemcore/worlddatabase/environment/" />

<path name="EntityTypeConfiguration"

directory="final/config/systemcore/worlddatabase/entityTypes/" />

<path name="TileConfiguration"

directory="final/config/systemcore/worlddatabase/tile/" />

<!-- Paths for User DB Datastructure -->

<path name="UserConfiguration"

directory="final/config/systemcore/userdatabase/" />

<path name="AvatarConfiguration"

directory="final/config/systemcore/userdatabase/avatar/" />

<path name="CursorConfig"

directory="final/config/systemcore/userdatabase/cursorRepresentation/" />

<path name="CursorTransformationModelConfiguration"

directory="final/config/systemcore/userdatabase/cursorTransformationModel/" /

>

<path name="UserTransformationModelConfiguration"

directory="final/config/systemcore/userdatabase/userTransformationModel/" />

<!-- Path for TransformationManager -->

<path name="TransformationManagerConfiguration"

directory="final/config/systemcore/transformationmanager/" />

<!-- Path for Interfaces Datastructure -->

<path name="ControllerConfiguration"

directory="final/config/inputinterface/controllermanager/" />

<!-- Paths for Module Datastructure -->

<path name="NavigationConfiguration"

directory="final/config/modules/navigation/" />

<path name="InteractionModuleConfiguration"

directory="final/config/modules/interaction/" />

<path name="NetworkConfiguration" directory="final/config/modules/network/" />

<!-- Paths for Models -->

<path name="Models" directory="models/" />

<path name="Tiles" directory="models/tiles/" />

<path name="Entities" directory="models/entities/" />

<path name="Skybox" directory="models/skybox/" />

<path name="Highlighters" directory="models/highlighters/" />

<path name="Avatars" directory="models/avatars/" />

<path name="HeightMaps" directory="models/heightmaps/" />

<path name="CollisionMaps" directory="models/collisionmaps/" />

<path name="Images" directory="images/" />

</paths>

</generalConfig >

Listing 2.1: general.xml

2.1 Modules

Let’s have brief look at the structure of the general module configuration, before we continue with
the system core. The modules configuration as referenced by the <modules>-node with the key
attribute set to modules in the general configuration contains links to the configuration files of
the individual modules. Each of the modules is identified by a <module>-node and can take up
to three parameters:

• name
This attribute describes the name of the module. In the standard inVRs package it can be
set either to Navigation, Interaction, or Network.

8

Chapter 2 - System Core and General Setup 2.2. System Core

• configFile
The name of the configuration file of the specific module. These files will be explained in
the subsequent chapters dedicated to the according modules.

• libraryName
In case the name of the library is different that the module name, this attribute allows to
specify the library name for the module to be loaded. These libraries should be located in
the directory indicated in the general configuration file which has the <path>-nodes name
attribute set to Plugins.

<?xml version="1.0" encoding="UTF -8"?>

<!DOCTYPE modules SYSTEM "http://dtd.invrs.org/modules_v1 .0a4.dtd">

<modules version="1.0a4">

<module name="Navigation" configFile="navigation.xml"/>

<module name="Interaction" configFile="interaction.xml" />

</modules >

Listing 2.2: exampleModules.xml

2.2 System Core

The system core configuration is used for referencing to the configuration files of the individual
core components of the inVRs framework. It is consequentially parsed by the cores main class
SystemCore. The directory of the configuration of the system core can be specified in the <path>-
sub-node with the name attribute SystemCoreConfiguration in the general configuration.

• <worldDatabase>
This node takes one configFile attribute. Its value describes the filename of the config-
uration of the world database. This configuration file is parsed and evaluated by the class
WorldDatabase.

• <userDatabase>
This node takes one configFile attribute, which is the filename of the configuration of the
user database. This configuration file is parsed and evaluated by the class UserDatabase.

• <transformationManager>
This node takes one configFile attribute, which is the filename pointing to the transfor-
mation manager’s configuration. This configuration file is then parsed and evaluated by the
class TransformationManager.

<?xml version="1.0"?>

<!DOCTYPE systemCore SYSTEM "http://dtd.invrs.org/systemCore_v1 .0a4.dtd">

<systemCore version="1.0a4">

<worldDatabase configFile="worldDatabase.xml" />

<userDatabase configFile="userDatabase.xml" />

<transformationManager configFile="modifiers.xml" />

</systemCore >

Listing 2.3: systemCore.xml

9

http://www.inVRs.org/doxygen//classSystemCore.html
http://www.inVRs.org/doxygen//classWorldDatabase.html
http://www.inVRs.org/doxygen//classUserDatabase.html
http://www.inVRs.org/doxygen//classTransformationManager.html

Chapter 2 - System Core and General Setup 2.3. User Database

2.3 User Database

The user database configuration is used for referencing to the configuration of the individual parts
of the user database of the inVRs framework. The configuration of the user database is parsed and
evaluated in an object of the class UserDatabase. In case a path for the user database configuration
is set as one of the <path>-sub-nodes in the general configuration this directory is searched for
the configuration file specified in the <userDatabase>-node of the system core configuration. It
provides four nodes containing references to configuration files of the user representation, the
cursor representation, the model for defining the behavior of the cursor, and the model describing
the transformation of the user:

• <avatar>
Two different types of avatars are supported so far by the framework, simple avatars and
Avatara avatars. This node contains the file name of the avatar configuration. Depending
on the chosen configuration in the referenced file a given type of avatar is loaded and used
for the rendering of the user representation.

• <cursorRepresentation>
The cursor representation allows the user to chose a way how the own cursor is represented.
Two alternatives are offered so far. A simple cursor as well as a cursor representing the state
of interaction can be used. These representations are loaded as well dynamically based on
the referenced configuration file.

• <cursorTransformationModel>
A variety of cursor transformation models are available for inVRs. These cursor models
describe the behavior of the cursor during interaction and navigation through the scene.
These models are often very closely related to the interaction technique which is used.

• <userTransformationModel>
To work with the inVRs coordinate systems of the user the user transformation model is
often used. It describes the position and orientation of the user mapped inside the VE.

The following listing gives an example for the configuration of the user database:

<?xml version="1.0"?>

<!DOCTYPE userDatabase SYSTEM "http: //dtd.invrs.org/userDatabase_v1 .0a4.dtd">

<userDatabase version="1.0a4">

<avatar configFile="undead.xml" />

<cursorRepresentation configFile="interactionCursor.xml" />

<cursorTransformationModel configFile="virtualHandCursorModel.xml"/>

<userTransformationModel configFile="headPositionUserTransformationModel.xml"/>

</userDatabase >

Listing 2.4: exampleUserDatabase.xml

The following subsections will describe in detail the configurations of the individual components
used in the user database.

2.3.1 Avatar

The configuration of the avatar is passed down from the class AvatarInterface to the derived
implementations.
Depending on the chosen type of the main node two different alternatives are possible:

• SimpleAvatar
The simple avatar displays a basic geometry which is used as a representation for the user.
The configuration is parsed by objects of the class SimpleAvatar.

10

http://www.inVRs.org/doxygen//classUserDatabase.html
http://www.inVRs.org/doxygen//classAvatarInterface.html
http://www.inVRs.org/doxygen//classSimpleAvatar.html

Chapter 2 - System Core and General Setup 2.3. User Database

• AvataraAvatar
The Avatara avatar provides a variety of additional functionality. The configuration is parsed
by objects of the class AvataraAvatar. The Avatara package has to be previously installed
in order to use the Avatar avatars.

Simple Avatar

A simple avatar is a very basic geometry with a texture representing the user in the virtual
world. The simple avatars are not articulated and do not provide any features besides their static
graphical representation.

• <name>
The name of the avatar is provided in the value attribute of the <name>-node.

• <representation>
This node encapsulates two sub-nodes describing the loaded model and the transformation
of the model. It has been previously described in the introductory chapter.

– <file>
The <file>-node contains two attributes type and name. Type describes the file type
of the model to be loaded. Currently 3DS and VRML are supported as file formats for
simple avatars. In general this depends on the scene graph which is used for rendering,
since its file loaders are incorporated to load the models. The name attribute describes
the file name of the model which is to be loaded. Typically it is concatenated to the
Avatars path setting in the general configuration.

– <transformation>
This node consists of four sub-nodes for <translation>, <rotation>,<scale>, and <sca-
leOrientation>as previously described in the introductory chapter.

<?xml version="1.0"?>

<!DOCTYPE simpleAvatar SYSTEM "http: //dtd.invrs.org/simpleAvatar_v1 .0a4.dtd">

<SimpleAvatar version="1.0a4">

<name value="TieFigher" />

<representation >

<file type="VRML97" name="tie.wrl" />

<transformation >

<translation x="0" y="0" z="0" />

<rotation x="0" y="1" z="0" angleDeg="0" />

<scale x="1" y="1" z="1" />

</transformation >

</representation >

</SimpleAvatar >

Listing 2.5: exampleAvatar.xml

Avatara Avatar

The Avatara avatars are fully articulated avatars which provide features like support of animation,
use of mesh skinning, and the control of specific bones like the spine, the head and the arm. A
detailed introduction on the Avatara avatars is given in the Avatara Manual. The configuration
of these avatars is performed in the class AvataraAvatar.

• <name>
The name of the Avatara avatar.

11

http://www.inVRs.org/doxygen//classAvataraAvatar.html
http://www.inVRs.org/doxygen//classAvataraAvatar.html

Chapter 2 - System Core and General Setup 2.3. User Database

• <representation>
This node encapsulates two sub-nodes describing the loaded model and the transformation
of the model.

– <file>
The <file>-node contains two attributes type and name. Type describes the file type
of the model to be loaded. The type has to contain the string "AvataraMDL" which is
a proprietary Avatara file format that can be exported from Blender, 3D Studio Max
or Maya. The name describes the file name of the model. The extension of the files to
be loaded is always ".mdl". Typically it is concatenated to the Avatars path setting
in general configuration.

– <transformation>
This node consists of four sub-nodes for <translation>, <rotation>,<scale>, and <sca-
leOrientation>as previously described in the introductory chapter.

• <texture>
This node defines an additional texture, which is to be mapped on the geometry. The file
type of the texture has to be either set to JPEG, PNG or TGA.

• <animations>
The <animations>-node contains the attributes smooth describing whether the transition
between different animation phases should be smoothed or not, speed defining the animation
speed, and default setting an initial animation sequence out of the following sub-nodes.

– <animation>
An <animation>-node describes an animation sequence with a given name identified
by the attribute name and a path and file combination stored in file which identifies
which animation file is to be used. As with the models of the Avatara package the
animations use a proprietary file format with the extension ".ani". Animations can
be exported as well from the modeling tools Blender, 3D Studio Max or Maya.

<?xml version="1.0"?>

<!DOCTYPE avataraAvatar SYSTEM "http: //dtd.invrs.org/avataraAvatar_v1 .0a4.dtd">

<AvataraAvatar version="1.0a4">

<name value="Undead"/>

<representation >

<file type="Avatara MDL" name="undead/undead.mdl"/>

<transformation >

<translation x="0" y="0" z="0"/>

<rotation x="1" y="0" z="0" angleDeg=" -90"/>

<scale x=" -0.08" y=" -0.08" z="0.08"/>

</transformation >

</representation >

<texture file="undead/undeadN.jpg"/>

<animations smooth="true" speed="2" default="standing">

<animation name="standing" file="undead/undead_standing.ani"/>

<animation name="walking" file="undead/undead_walking.ani"/>

</animations >

</AvataraAvatar >

Listing 2.6: exampleAvataraAvatar.xml

2.3.2 Cursor Transformation Model

The available cursor models describe the behavior of the user’s cursor. A variety of cursor models
are already provided. Their configurations are parsed in the individual classes which are derived
from CursorTransformationModel. Cursor models often work closely together with the configured
interaction technique. The three standard cursor models are:

12

http://www.inVRs.org/doxygen//classCursorTransformationModel.html

Chapter 2 - System Core and General Setup 2.3. User Database

• VirtualHandCursorModel

• HomerCursorModel

• GoGoCursorModel

VirtualHandCursorModel

The most common cursor model used in VR applications is the virtual hand cursor model. The
configuration is parsed in the objects of the class VirtualHandCursorModel. When using a virtual
hand model a direct mapping between the gathered sensor data and the cursor is performed. The
model should be used in conjunction with the virtual hand manipulation and confirmation model
of the interaction module. It is set by a single node:

• <model>
The name attribute of the <model>-node has to be set to "VirtualHandCursorModel". The
model does not take any additional arguments in the current implementation.

<?xml version="1.0"?>

<!DOCTYPE cursorTransformationModel SYSTEM "http://dtd.invrs.org/

cursorTransformationModel_v1 .0a4.dtd">

<cursorTransformationModel version="1.0a4">

<model name="VirtualHandCursorModel"/>

</cursorTransformationModel >

Listing 2.7: exampleVirtualHandCursorModel.xml

HomerCursorModel

The Hand-centered Object Manipulation Extending Ray-casting (HOMER) cursor model is de-
signed to work with a setup of interaction transition functions used for an implementation of a
HOMER interaction technique as described by Bowman and Hodges [BH97]. More detail on the
functionality of the interaction technique can be found in their publication. The model is typi-
cally used with the HOMER selection action and the HOMER manipulation action model of the
interaction module. The configuration is parsed in the objects of the class HomerCursorModel.

• <model>
The name attribute of the <model>-node has to be set to "HomerCursorModel". It does
take three additional arguments.

This cursor model make use of the ArgumentVector as described in the introductory chapter. The
possible arguments are:

• animationSpeed
This attribute describes the movement speed of the cursor, when moving towards an object
or back to the user representation.

• forwardThreshold
This attribute is needed for collision detection during forward movement of the cursor.
Collision between the cursor position and the target object are calculated. A common value
would be 0.1.

• backwardThreshold
The attribute is needed for collision detection during backward movement of the cursor.
Typically the value is set to 0.1.

13

http://www.inVRs.org/doxygen//classVirtualHandCursorModel.html
http://www.inVRs.org/doxygen//classHomerCursorModel.html
http://www.inVRs.org/doxygen//classArgumentVector.html

Chapter 2 - System Core and General Setup 2.3. User Database

<?xml version="1.0"?>

<!DOCTYPE cursorTransformationModel SYSTEM "http://dtd.invrs.org/

cursorTransformationModel_v1 .0a4.dtd">

<cursorTransformationModel version="1.0a4">

<model name="HomerCursorModel">

<arguments >

<arg key="animationSpeed" type="float" value="40"/>

<arg key="forwardThreshold" type="float" value="0.1"/>

<arg key="backwardThreshold" type="float" value="0.1"/>

</arguments >

</model>

</cursorTransformationModel >

Listing 2.8: exampleHomerCursorModel.xml

GoGoCursorModel

This cursor model is used in conjunction with the GoGo interaction technique as described by
Poupyrev et al. [PBWI96]. It should be used in conjunction with the interaction models used
for virtual hand interaction. The scaling is applied inside the cursor model. The configuration is
passed down to the objects of the class GoGoCursorModel.

• <model>
The name attribute of the <model>-node has to be set to "GoGoCursorModel". The model
takes two additional arguments.

This cursor model make use of the ArgumentVector as well. The possible arguments are:

• distanceThreshold
This attribute sets a threshold, describing when to change from linear movement into an
exponentially scaled movement.

• k
This attribute is a constant value used for scaling the exponential distance calculation of the
GoGo interaction technique.

<?xml version="1.0"?>

<!DOCTYPE cursorTransformationModel SYSTEM "http://dtd.invrs.org/

cursorTransformationModel_v1 .0a4.dtd">

<cursorTransformationModel version="1.0a4">

<model name="GoGoCursorModel">

<arguments >

<arg key="distanceThreshold" type="int" value="20"/>

<arg key="k" type="float" value="0.3"/>

</arguments >

</model>

</cursorTransformationModel >

Listing 2.9: exampleGoGoCursorModel.xml

2.3.3 User Transformation Model

These models describe the transformation of a user. In general the models are supposed to be
implemented in classes derived from UserTransformationModel. Currently only a single model
is implemented:

• HeadPositionUserTransformationModel

14

http://www.inVRs.org/doxygen//classGoGoCursorModel.html
http://www.inVRs.org/doxygen//classArgumentVector.html
http://www.inVRs.org/doxygen//classUserTransformationModel.html

Chapter 2 - System Core and General Setup 2.3. User Database

HeadPositionUserTransformationModel

This model maps the user position relative to the transformation which is gathered by the head
sensor of the tracking system. The configuration of the model is parsed and evaluated by objects
of the class HeadPositionUserTransformationModel.

<?xml version="1.0"?>

<!DOCTYPE userTransformationModel SYSTEM "http://dtd.invrs.org/

userTransformationModel_v1 .0a4.dtd">

<userTransformationModel version="1.0a4">

<model name="HeadPositionUserTransformationModel">

</userTransformationModel >

Listing 2.10: exampelHeadPositionUserTransformationModel.xml

2.3.4 Cursor Representation

The cursor representation defines how the user cursor is represented in the VE. It is parsed and
evaluated in objects derived from the class CursorRepresentationInterface. Depending on
the configuration file used for the cursor representation a chosen type is selected. The available
standard types for the cursor representation are:

• SimpleCursorRepresentation

• InteractionCursorRepresentation

SimpleCursorRepresentation

This type of cursor representation makes use of a simple model to be displayed at the cursors po-
sition. It is implemented in the class SimpleCursorRepresentation. A basic <representation>-
node, similar to the one used for the representation of the simple avatars, is used for configuring
the model.

<?xml version="1.0"?>

<!DOCTYPE simpleCursorRepresentation SYSTEM "http: //dtd.invrs.org/

simpleCursorRepresentation_v1 .0a4.dtd">

<simpleCursorRepresentation version="1.0a4">

<representation >

<file type="VRML97" name="hand.wrl" />

<transformation >

<translation x="0" y="0" z="0" />

<rotation x="0" y="1" z="1" angleDeg="0" />

<scale x="0.5" y="0.5" z="0.5" />

</transformation >

</representation >

</simpleCursorRepresentation >

Listing 2.11: exampleSimpleCursorRepresentation.xml

InteractionCursorRepresentation

The interaction cursor representation is slightly advanced but still very basic. The implementation
can be found in the class InteractionCursorRepresentation. It loads three models displayed
differently based on the state of the interaction. The switching of the different models is issued
by the interaction module.

15

http://www.inVRs.org/doxygen//classHeadPositionUserTransformationModel.html
http://www.inVRs.org/doxygen//classCursorRepresentationInterface.html
http://www.inVRs.org/doxygen//classSimpleCursorRepresentation.html
http://www.inVRs.org/doxygen//classInteractionCursorRepresentation.html

Chapter 2 - System Core and General Setup 2.4. World Database

• <idleModel>
This model is displayed when the interaction state machine resides in the idle state. Indi-
cating that no object is currently selected or manipulated.

• <selectionModel>
The model is displayed when the interaction is in the selection state. An object has been
selected for manipulation.

• <manipulationModel>
The last model is displayed during the actual object manipulation.

<?xml version="1.0"?>

<!DOCTYPE interactionCursorRepresentation SYSTEM "http: //dtd.invrs.org/

interactionCursorRepresentation_v1 .0a4.dtd">

<interactionCursorRepresentation version="1.0a4">

<idleModel >

<representation >

<file type="VRML97" name="hand.wrl" />

<transformation >

<translation x="0" y="0" z="0" />

<rotation x="0" y="1" z="1" angleDeg="0" />

<scale x="0.5" y="0.5" z="0.5" />

</transformation >

</representation >

</idleModel >

<manipulationModel >

<representation >

<file type="VRML97" name="hand_closed.wrl" />

<transformation >

<translation x="0" y="0" z="0" />

<rotation x="0" y="1" z="1" angleDeg="0" />

<scale x="0.5" y="0.5" z="0.5" />

</transformation >

</representation >

</manipulationModel >

</interactionCursorRepresentation >

Listing 2.12: exampleInteractionCursorRepresentation.xml

2.4 World Database

The world database contains information about the virtual world of an inVRs application. Three
different nodes are used to configure the world database. The configuration of the database is
triggered in the WorldDatabase object.
Similar to the user database this configuration file simply contains references to the different
configurations of the individual components of the world database.

• <entityTypes>
These objects act as templates for objects that are actually used for interaction in a VE. In
this node a reference to a file containing the entity type database is given.

• <tiles>
Tiles are mainly used for implementing the floor planes of a VE. They are designed to
structure a VE in an easier fashion.

• <environmentLayout>
The environment layout describes the alignment of the different environments, which again
contain descriptions where the tiles and entities are located.

16

http://www.inVRs.org/doxygen//classWorldDatabase.html

Chapter 2 - System Core and General Setup 2.4. World Database

<?xml version="1.0"?>

<!DOCTYPE worldDatabase SYSTEM "http: //dtd.invrs.org/worldDatabase_v1 .0a4.dtd">

<worldDatabase version="1.0a4">

<entityTypes configFile="entityTypes.xml" />

<tiles configFile="tiles.xml" />

<environmentLayout configFile="environmentLayout.xml" />

</worldDatabase >

Listing 2.13: exampleWorldDatabase.xml

The following subsections introduce the individual components of the world database.

2.4.1 Entity Types

An entity is used typically as an interactive object in the environment. The configuration for the
entities describes the different types of entities which can appear in an inVRs environment. The
configuration of these entity types is parsed and evaluated in the corresponding class EntityType.

• <entityType>
Entity types can be identified by a unique id stored in the attribute typeId and a name
stored in the attribute name. Additionally it can be defined whether the entity can be
used for interaction or whether it is static in the VE and can not be manipulated. This is
determined by the boolean attribute fixed.

– <representation>
As for example with the avatars the representation contains information about the
model with an initial transformation. With the entity types the copy attribute becomes
of high importance. When the entities are finally instantiated in the environment
configuration the geometry and texture data will be fully replicated1 in case the copy
attribute of the according entity type is set to true. Otherwise a reference to the model
behind the entity is provided.

<?xml version="1.0"?>

<!DOCTYPE entityTypes SYSTEM "http://dtd.invrs.org/entityTypes_v1 .0a4.dtd">

<entityTypes version="1.0a4">

<entityType typeId="1" name="cube_1x1" fixed="1" >

<representation copy="false">

<file type="VRML" name="cube_1x1.WRL" />

</representation >

</entityType >

<entityType typeId="10" name="CoordinateSystem" fixed="1" >

<representation copy="false">

<file type="VRML" name="coordinateSystem.wrl" />

</representation >

</entityType >

<entityType typeId="20" name="inVRsLogo" fixed="0" >

<representation copy="false">

<file type="VRML" name="inVRsLogo.wrl" />

<transformation >

<translation x="0.0" y="0.7" z="0.0" />

<scale x="0.3" y="0.3" z="0.3"/>

</transformation >

</representation >

</entityType >

</entityTypes >

Listing 2.14: exampleEntity.xml

1implemented as deep clone in OpenSG

17

http://www.inVRs.org/doxygen//classEntityType.html

Chapter 2 - System Core and General Setup 2.4. World Database

2.4.2 Tile

A tile can be used for defining a floor plane in an inVRs VE. Tiles have a rectangular shape and
are a rather comfortable mechanism to layout a VE. The configuration of a tile is parsed and
evaluated in the according Tile class.

• <tile>
Tiles can be identified by a unique id, stored in the attribute typeId or a given name stored
in the attribute name.

– <tileProperties>
The nodes <size>and <adjustment>describe the transformation of a given tile type
used for layouting inside an environment. In the <size>-node the planar dimension of
the representation which is only used for arranging a world is defined by the attributes
xSize and zSize. These values do not affect the object representation of the tiles they
are solely used for the arrangement and the layouting of the environment.
Attributes of the <adjustment>-node do change the transformation of the tile. The
height attribute allows for an additional translation along the y-axis. And the attribute
yRotation stores a floating point value describing a positive rotation around the y-axis.
The units for this rotation are degrees.

– <representation>
Similar to the entity types the representation contains information about the used
model. The copy attribute is used in the same way considering the cloning of the
displayed tiles.

<?xml version="1.0"?>

<!DOCTYPE tiles SYSTEM "http://dtd.invrs.org/tiles_v1 .0a4.dtd">

<tiles version="1.0a4">

<tile id="1" name="plane_10x10">

<tileProperties >

<size xSize="10" zSize="10" />

<adjustment height="0" yRotation="0" />

</tileProperties >

<representation copy="false">

<file type="VRML97" name="plane_10x10.WRL" />

</representation >

</tile>

</tiles>

Listing 2.15: exampleTile.xml

2.4.3 Environment and Environment Layout

The environments and their layout are used to describe the appearance and the arrangement of
the virtual world. Previously defined entity types and tiles are placed and layouted in a VE inside
these configuration files. The environment can be seen as a coordinate system or a region in a VE
while the environment layout is used to arrange these environments.

Environment Layout

An <environmentLayout>-node configures the position of the different used environments on a
plane. It can contain a single <tileGrid>-sub-node describing a grid resolution and additionally
a set of environments which are to be aligned on this grid.

• <tileGrid>
This node defines a grid inside the environment. It is used for the proper alignment of

18

http://www.inVRs.org/doxygen//classTile.html

Chapter 2 - System Core and General Setup 2.4. World Database

tiles. The resolution of the grid is defined by the two attributes xSpacing and zSpacing.
More detail on the definition of the grid layout is given in the description of the actual
environments. No negative values are accepted for the spacing values.

• <environment>
Many <environment>-nodes can exist. Each environment is identified by a unique id that is
stored in the id attribute. It has an individual configuration file stored in the name attribute
and a two-dimensional location defined in xLoc and zLoc. The location of the environment
is finally dependent on the xSpacing and zSpacing attributes of the <tileGrid>-node as
well as the xLoc and zLoc attributes of this node.
To determine in world coordinates where the upper left corner of an environment is located,
one can simply multiply the tile grids spacing and the loc attributes of the environment
layout. The loc attributes can contain negative values.

<?xml version="1.0"?>

<!DOCTYPE environmentLayout SYSTEM "http: //dtd.invrs.org/environmentLayout_v1 .0a4.

dtd">

<environmentLayout version="1.0a4">

<tileGrid xSpacing="10" zSpacing="10"/>

<environment id="1" name="environment.xml" xLoc="0" zLoc="0"/>

</environmentLayout >

Listing 2.16: exampleEnvironmentLayout.xml

Environment

An environment can be considered as a certain region of an inVRs VE or as an individual sub-
coordinate system. It does not have a visual representation. In the configuration the actual
placement of entities as well as tiles takes place. The coordinate system of an environment has
its origin in the top left corner environment. The configuration of an environment is parsed and
evaluated in the according Environment class.

• <tileMap>
The <tileMap>-node is used for the specification of a map of tiles. It takes two arguments
defining the dimension of the map xDimension and zDimension which describe the size
of a 2D grid. These dimension attributes multiplied with the spacing attributes of the
environment layout configuration define the size of an environment in world coordinates.
The size of a tile defined in the xSize and zSize attributes of the <tile>-node is taken into
account for layouting. Inside the node a list of tiles is inserted. This list contains the ids of
the tiles.

• <entryPoint>
This node describes an entry point used at startup in a VE. Camera and user transformation
is typically set to this entrypoint described by the six attributes xPos, yPos, zPos, xDir,
yDir and zDir. The transformation of an entry point is to be seen in local environment
coordinates.
In general it is possible to use a whole list of entry points, which can be processed by the
application.

• <entity>
Basically an instance of an entity of a certain entity type is provided by nodes of this type.
The attribute id refers to a unique id while the attribute typeId refers to its entity type which
has to be previously defined in an <entityType>-node in the entity types configuration.
Additionally the sub-node <transformation>can be used to alter the transformation of this
specific entity. First the entity type transformation is applied and afterwards the actual

19

http://www.inVRs.org/doxygen//classEnvironment.html

Chapter 2 - System Core and General Setup 2.5. Event Manager

entity transformation is applied. This transformation is local in environment coordinates of
the environment where the entity is located.

<?xml version="1.0"?>

<!DOCTYPE environment SYSTEM "http://dtd.invrs.org/environment_v1 .0a4.dtd">

<environment version="1.0a4">

<tileMap xDimension="1" zDimension="1">

1

</tileMap >

<entryPoint xPos="5" yPos="4" zPos="-5" xDir="0" yDir="0" zDir="1"/>

<entity id="1" typeId="1">

<transformation >

<translation x="3.5" y="0" z="3.5"/>

<rotation x="0.00" y="1.00" z="0.00" angleDeg="0"/>

<scale x="1.00" y="1.00" z="1.00"/>

</transformation >

</entity >

<!-- TrackedHeadTransformation -->

<entity id="23" typeId="10">

<transformation >

<translation x="5" y="1" z="5"/>

<rotation x="0.00" y="1.00" z="0.00" angle="0"/>

<scale x="0.50" y="0.50" z="0.50"/>

</transformation >

</entity >

<!-- inVRs logo -->

<entity id="30" typeId="20">

<transformation >

<translation x="5" y="0" z="9.5"/>

<rotation x="0.00" y="1.00" z="0.00" angle="180"/>

<scale x="1" y="1" z="1"/>

</transformation >

</entity >

</environment >

Listing 2.17: exampleEnvironment.xml

2.5 Event Manager

A detailed introduction on transformation and event handling in the inVRs framework is given in
[ALBV07]. The event manager so far provides a very basic setup which is stored in source code.
It does not have any additional configuration capabilities yet, which is likely to change in newer
versions of the framework. Thus this section has been integrated to support extension and for
completeness sake.
The implementation of the event manager can be found in the class EventManager.

2.6 Transformation Manager

The configuration of the transformation manager might seem fairly uncomfortable at first sight
but in the end it is pretty powerful. The configuration files are parsed and evaluated by the class
TransformationManager. The main components of a transformation manager setup are pipes
and mergers. Inside the pipes modifiers have to be set up which alter the transformations flowing
through the pipes. Mergers can be used to combine the results of two or more pipes.
More detail on transformation management and pipe setup is provided in [ALBV07].

20

http://www.inVRs.org/doxygen//classEventManager.html
http://www.inVRs.org/doxygen//classTransformationManager.html

Chapter 2 - System Core and General Setup 2.6. Transformation Manager

• <logFile>
This node takes a single attribute name the value of the attribute describes the name of the
log file where the information generated by a potential logging modifier is written to. Such
log files could be used for replay purposes or debugging.

• <pipeList>
This node contains a list of sub-nodes of the type pipe. Each object or entity in the VE
which is to be transformed and makes use of the transformation manager should have a pipe
opened.

– <pipe>
A pipe is used to route transformations from one inVRs component to another inVRs
component. A pipe has a complex set of attributes. They are implemented in the class
TransformationPipe. The source and the target component identifying from where
to where the transformations are to be routed are described by the two attributes
srcComponentName and srcComponentName.
With the attribute pipeType it is possible to define a specific type of a pipe. The value
Any is used as a wildcard. The attributes objectClass, objectType, and objectId
are highly dependent on the component, where the pipe was opened. Wildcards can be
used there as well.

∗ <modifier>
The modifiers inside a pipe are executed sequentially on the transformations flowing
through the pipe. The are processed in the same order as they are set up in
the configuration. An overview and a detailed description on the so far available
modifiers is given in Section 2.6.1.

• <mergerList>
The concept of mergers was introduced to ease the implementation of concurrent object
manipulation. This node contains several sub-nodes each describing a merger. Once two
different pipes are opened on the same object in the transformation manager this conflict is
detected and can be resolved by using a merger.

– <merger>
One node in a list of mergers is able to combine the results of two different pipes
and write it to a new output pipe. The are implemented as sub-classes of the class
TransformationMerger.

∗ <inputPipe>
The attributes of an <inputPipe>-node are identical to a normal pipe. In case the
merger has detected two sources accessing a pipe with the same attributes as the
input pipe it becomes active.

∗ <outputPipe>
The attributes of an <outputPipe>-node are identical to a normal pipe. If a
merging process has taken place the results are written on this output pipe.

<?xml version="1.0"?>

<transformationManager >

<!-- srcModule: ID as defined in ModuleIds.h (USER_DEFINED_ID == 0) -->

<pipe srcModuleName="NavigationModule" dstModuleName="TransformationManager"

pipeType="Any" objectClass="Any" objectType="Any" objectId="Any"

fromNetwork="0">

<modifier type="ApplyNavigationModifier" />

<modifier type="HeightMapModifier" />

<modifier type="CheckCollisionModifier">

<arguments >

<arg key="radius" type="float" value="1" />

<arg key="fileName" type="string" value="MedievalTownCollisionMap.wrl"/>

21

http://www.inVRs.org/doxygen//classTransformationPipe.html
http://www.inVRs.org/doxygen//classTransformationMerger.html

Chapter 2 - System Core and General Setup 2.6. Transformation Manager

</arguments >

</modifier >

<modifier type="TransformationDistributionModifier" />

<modifier type="UserTransformationWriter" />

<modifier type="CameraTransformationWriter" >

<arguments >

<arg key="cameraHeight" type="float" value="1.8"/>

<arg key="useGlobalYAxis" type="bool" value="true"/>

</arguments >

</modifier >

<modifier type="AvatarTransformationWriter" >

<arguments >

<arg key="clipRotationToYAxis" type="bool" value="true" />

</arguments >

</modifier >

<modifier type="ApplyCursorTransformationModifier" />

<modifier type="CursorTransformationWriter" />

</pipe>

<pipe srcModuleName="InteractionModule" dstModuleName="WorldDatabase"

pipeType="Any" objectClass="Any" objectType="Any" objectId="Any"

fromNetwork="0">

<modifier type="ManipulationOffsetModifier"/>

<modifier type="TransformationDistributionModifier"/>

<modifier type="EntityTransformationWriter" />

</pipe>

<pipe srcModuleName="InteractionModule" dstModuleName="WorldDatabase"

pipeType="Any" objectClass="Any" objectType="Any" objectId="Any"

fromNetwork="1">

<modifier type="EntityTransformationWriter" />

</pipe>

<pipe srcModuleName="NavigationModule" dstModuleName="TransformationManager"

pipeType="Any" objectClass="Any" objectType="Any" objectId="Any"

fromNetwork="1">

<modifier type="UserTransformationWriter" />

<modifier type="AvatarTransformationWriter" >

<arguments >

<arg key="clipRotationToYAxis" type="bool" value="true" />

</arguments >

</modifier >

</pipe>

</transformationManager >

Listing 2.18: exampleTransformationManager.xml

2.6.1 Modifiers

In general there is a fair bit of modifiers available already which will be explained in the following
sub-sections. In a more fine grained way these different modifiers can be categorized in three main
types:

• Modifier
A general modifier which typically alters the transformation passing through the pipe.

• Writer
These special modifiers do not alter the content of the transformation stored in the pipe.
They simply write data to an external component, which does not have to be the target
component.

• Interrupter
Interrupters are used stop the further processing of a pipe.

Many of them are implemented using argument vectors. The modifiers are all derived from the
class TransformationModifier.

22

http://www.inVRs.org/doxygen//classTransformationModifier.html

Chapter 2 - System Core and General Setup 2.6. Transformation Manager

They are placed as a pipe stage inside a pipe with the node name <modifier>and carry the
attribute type. This attribute has to be set to a valid modifier name as listed in the following:

ApplyNavigationModifier

This modifier is implemented in the class ApplyNavigationModifier. It is used in a navigation
pipe and applies the transformation currently in the pipe, which should have been received from
the navigation module, on the navigated transformation currently stored in the user object.
The resulting transformation is then written in the pipe for further processing. The modifier takes
the following arguments:

• centerAtWorldUser
This optional boolean variable defines the point of rotation. It is set to true (default) then the
rotation change is calculated around the world user transformation, otherwise the rotation
change is applied directly to the navigated transformation.

HeightMapModifier

The height map modifier is parsed in the class of the same name HeightMapModifier. An addi-
tional height map is used to alter the current transformation stored in the pipe. To get details on
the use of height maps it is helpful to work through the Medieval Town Tutorial. Details on the
generation and processing of the inVRs heightmaps are given in [BLAV06]. The modifier takes
the following arguments:

• fileName
This variable defines the heightmap file which should be loaded.

• scale
This optional float value defines a scale value which scales the height values of the heightmap.

• offset
This optional float value allows to define a height offset which is added to the height values
of the heightmap.

CheckCollisionModifier

The check collision modifier is parsed in the class of the same name CheckCollisionModifier. An
additional collision map is used to correct the given transformation. It makes use of an additional
argument vector which can take the following parameters:

• radius
This attribute describes the radius of a circle around the transformation in the pipe. The
collision map is checked against this circle. In case a collision has taken place the transfor-
mation is corrected, otherwise it is just passed through.

• fileName
This attribute stores the collision map against which the circle is to be checked. It is a simple
VRML file containing collision lines for the VE.

Information on the creation and usage of collision maps can be found in the Medieval Town Tutorial
as well as in [BLAV06].

23

http://www.inVRs.org/doxygen//classApplyNavigationModifier.html
http://www.inVRs.org/doxygen//classHeightMapModifier.html
http://www.inVRs.org/doxygen//classCheckCollisionModifier.html

Chapter 2 - System Core and General Setup 2.6. Transformation Manager

TransformationDistributionModifier

This modifier is parsed in the class of the same name TransformationDistributionModifier.
The given transformation in the pipe is written to the network module in order to be distributed
to the interconnected participants. At the remote site it will be inserted again in a pipe of the
remote transformation manager.

• protocol
The transmission protocol has to be set. The supported values are UDP (default) and TCP.

UserTransformationWriter

This modifier is parsed in the class of the same name UserTransformationWriter. It is used
to set the base position of the user representation in the VE. The modifier takes the following
arguments:

• useLocalUser
This optional boolean argument allows to define that the transformation should be written
to the local user instead of the owner of the pipe (which is the default behavior). This can
be used to change the user’s transformation from pipes owned by another user.

CameraTransformationWriter

This modifier is as well parsed in the class of the same name CameraTransformationWriter. The
writer is used for setting up the camera transformation. It makes use of an additional argument
vector which can take the following parameters:

• cameraHeight
This optional float attribute adds an additional offset to the height of the camera. It can
be useful if for example terrain following mechanisms are implemented which make use of
height maps in order to raise the camera above the terrain level.

• useGlobalYAxis
In case this optional boolean attribute is set to true the offset defined in cameraHeight is
applied on the y-axis of the global coordinate system instead of the local coordinate system
of the user transformation.

• useLocalUser
This optional boolean argument allows to define that the transformation should be written to
the camera of the local user instead of the owner of the pipe (which is the default behavior).

AvatarTransformationWriter

This modifier is parsed in the class of the same name AvatarTransformationWriter. This writer
sets the transformation used for the user representation. It makes use of an additional argument
vector which can take the following parameter:

• useLocalUser
This optional boolean argument allows to define that the transformation should be written
to the avatar of the local user instead of the owner of the pipe (which is the default behavior).

• clipRotationToYAxis
By setting this optional argument to true the user representation is always displayed in an
upward position. It is still possible to change the orientation of the camera, but the avatar
will always stay upwards.

24

http://www.inVRs.org/doxygen//classTransformationDistributionModifier.html
http://www.inVRs.org/doxygen//classUserTransformationWriter.html
http://www.inVRs.org/doxygen//classCameraTransformationWriter.html
http://www.inVRs.org/doxygen//classAvatarTransformationWriter.html

Chapter 2 - System Core and General Setup 2.6. Transformation Manager

ApplyCursorTransformationModifier

This modifier is parsed in the class of the same name ApplyCursorTransformationModifier. It
additionally applies the cursor transformation in combination with the selected cursor transfor-
mation model. The modifier takes the following arguments:

• useLocalUser
This optional boolean argument allows to define that the cursor transformation of the local
user should be calculated instead of the cursor transformation of the pipe owner (which is
the default behavior).

CursorTransformationWriter

This modifier is parsed in the class of the same name CursorTransformationWriter. It is used
to write the transformation of the users cursor. This modifier is dependent on the chosen cursor
model. The modifier takes the following arguments:

• useLocalUser
This optional boolean argument allows to define that the transformation should be written
to the cursor transformation of the local user instead of writing the cursor transformation
of the pipe owner (which is the default behavior).

ManipulationOffsetModifier

This modifier is parsed in the class of the same name ManipulationOffsetModifier. During
interaction it is often common that an offset from the point where the object was picked and
the origin of the object has to be applied. This modifier takes care of this offset. The modifier
supports no arguments.

EntityTransformationWriter

This modifier is parsed in the class of the same name EntityTransformationWriter. It is mainly
used in pipes for interaction where the entity is transformed as a result of manipulation. The
writer updates the transformation of the entity. The target entity is determined by the ID of the
transformation pipe. The writer supports no arguments.

TrackingDataWriter

If a tracking system is used this writer can be used to write the transformation from the pipe
to the transformation of the corresponding tracking data transformation in the user object. This
modifier is parsed in the class of the same name TrackingDataWriter. The writer supports no
arguments.

TrackingOffsetModifier

This modifier is parsed in the class of the same name TrackingOffsetModifier. It allows to add
an offset from a sensor from a tracking system to the incoming transformation. The modifier takes
the following arguments:

• useHeadSensor
This optional boolean argument defines if the Head sensor or the Hand sensor should be
used.

• removeYAxis
This optional boolean argument allows to define that the sensor position in the Y-axis
(upwards) should be removed before applying the offset.

25

http://www.inVRs.org/doxygen//classApplyCursorTransformationModifier.html
http://www.inVRs.org/doxygen//classCursorTransformationWriter.html
http://www.inVRs.org/doxygen//classManipulationOffsetModifier.html
http://www.inVRs.org/doxygen//classEntityTransformationWriter.html
http://www.inVRs.org/doxygen//classTrackingDataWriter.html
http://www.inVRs.org/doxygen//classTrackingOffsetModifier.html

Chapter 2 - System Core and General Setup 2.6. Transformation Manager

• removeOrientation
This optional boolean argument allows to define that the orientation should not be applied
as offset.

• useLocalUser
This optional boolean argument defines whether the tracking data information should be
read from the owner of the pipe (default behavior) or the local user.

TransformationLoggerModifier

To allow for detailed transformation logging, which might be used for later replay purposes a
logging modifier is provided. The logfile which is used is defined in the logfile element. This
modifier is parsed and evaluated in the class of the same name TransformationLoggerModifier.
The modifier takes the following arguments:

• policy
This optional argument allows to define a logging policy. Possible values are iterationbased
(default) and timebased.

• policyParam
Depending on the selected logging policy the argument defines either the number of iter-
ations between two log file entries (iterationbased) or the number of seconds between to
log file entries (timebased)

TargetPipeTransformationWriter

This modifier allows to write the incoming transformation into another transformation pipe. This
modifier is parsed in the class of the same name TargetPipeTransformationWriter. The modifier
takes the following arguments:

• srcId
Source component ID of the target pipe.

• dstId
Destination component ID of the target pipe.

• pipeType
Type of the target pipe.

• objectClass
Object class of the target pipe.

• objectType
Object type of the target pipe.

• objectId
Object Id of the target pipe.

• fromNetwork
Defines if the target pipe is from network or not.

MultiPipeInterrupter

This modifier allows to interrupt all pipes in which it is registered at once. This modifier is parsed
in the class of the same name MultiPipeInterrupter. The modifier takes no arguments.

26

http://www.inVRs.org/doxygen//classTransformationLoggerModifier.html
http://www.inVRs.org/doxygen//classTargetPipeTransformationWriter.html
http://www.inVRs.org/doxygen//classMultiPipeInterrupter.html

Chapter 2 - System Core and General Setup 2.7. Summary

AssociatedEntityInterrupter

The AssociatedEntityInterrupter stops the execution of the transformation pipe if the objectType
and the objectId fields of the pipe ID match to one of the associated entities of the local user.
This is the case when a user is manipulating an entity. This modifier is parsed in the class of the
same name AssociatedEntityInterrupter. The modifier takes no arguments.

2.6.2 Mergers

Mergers are used if two pipes point to the same target. They take the attribute type which
has to be one of the following list. Mergers are implemented in classes derived from the class
TransformationMerger.

SharedManipulationMerger

The SharedManipulationMerger can be used in order to allow multiple users to interact with
a single Entity at the same time. It therefore merges the manipulation pipes of those users
to a single pipe. In this pipe the resulting transformation can then be written to the entity
using the EntityTransformationWriter. The merger is implemented in the class of same name
SharedManipulationMerger. The modifier takes no arguments.

2.7 Summary

This chapter has first introduced the use of the general configuration, providing an initial setup,
links to the setup of the inVRs components were given and the path settings of the framework
were defined.
In the following section the setup of the system core and its individual components was explained in
detail. The user database used for managing user data, user representation and the transformations
for the user and cursor were described.
The world database configuration which used for setting up the virtual world with the entities,
tiles and environments has been explained in detail.
Two managers manage the communication of the inVRs core with its components. The basic
implementation of the event manager does not provide any configuration mechanisms but it was
introduced for the sake of completeness and extension.
The next manager the transformation manager is a highly configurable sub-component of the core.
Transformation data is passed through pipes which are configured by setting up pipe stages or
modifiers. This chapter has listed all the standard modifiers that are used for the configuration
of the transformation manager. The mergers used for combination of the pipes were listed and
described.
The following chapters introduce the interface configurations and module configurations.

27

http://www.inVRs.org/doxygen//classAssociatedEntityInterrupter.html
http://www.inVRs.org/doxygen//classTransformationMerger.html
http://www.inVRs.org/doxygen//classEntityTransformationWriter.html
http://www.inVRs.org/doxygen//classSharedManipulationMerger.html

Chapter 3

Input Interface

The input interface of inVRs is designed to handle arbitrary input devices or input types. Exam-
ples would be tracking systems, wands, mice, keyboards, joysticks or input generated by arduino
boards 1. The implementation so far takes care of an abstract controller that represents a virtual
input device which is then accessed in a standardized way by the inVRs components.
This controller is handled by a controller manager. The interface is parsed and evaluated by the
InputInterface class. The actual manager is handled by the ControllerManager class.
The configuration of the <module>-node providing a link to the controller takes up to three
attributes:

• name
This attribute describes the name of the interface to be included for input. To include the
controller used for processing of standard input devices use the string "ControllerManager"
as input value.

• configFile
This setup file describes name of the configuration file for the controller. It is concatenated
to the <path>-node with the attribute name set to "ControllerConfiguration" as defined
in the general configuration.

• libraryName
In case the name of the library differs to the input file the name of the library can be provided
separately.

In general it is of course possible to interconnect other input mechanisms to the input interface,
like for example speech processing and speech commands or gesture recognition, which is not
support by the framework yet.

<?xml version="1.0"?>

<!DOCTYPE inputInterface SYSTEM "http://dtd.invrs.org/inputInterface_v1 .0a4.dtd">

<inputInterface version="1.0a4">

<module name="ControllerManager" configFile="MouseKeybSensorController.xml"/>

</inputInterface >

Listing 3.1: exampleInputInterface.xml

3.1 Controller Manager

The controller manager is responsible for handling abstract input devices which consist of com-
ponents of a set of physical devices. Inside a <controller>-node one of such devices is defined.

1http://www.arduino.cc/

28

http://www.inVRs.org/doxygen//classInputInterface.html
http://www.inVRs.org/doxygen//classControllerManager.html
http://www.arduino.cc/

Chapter 3 - Input Interface 3.1. Controller Manager

In general it is possible to use only a single controller. This node is used to define the amount
of abstract components of which the abstract controller consists of. It is followed by an arbitrary
number of <device>-nodes which perform the mapping of the components of single or several
physical devices on the components of the abstract controller.

• <controller>
This node with its sub-nodes describes the complete data mapping for a single controller it
can contain the following three attributes. The attribute axes describes how many axes the
controller finally should contain. In buttons it is defined how many button the controller
should contain, and finally sensors defines the amount of sensors inside the newly defined
controller.

– <device>
Different types of supported physical devices or device libraries exist which will be
explained in the later sub-sections. This node takes one argument type describing the
name of device based on which the appropriate driver is selected. Devices can have
an argument vector describing their specific setup. Depending on the driver or library
each device can have an arbitrary amount of sub-nodes of the following three types.

∗ <button>
This node takes two attributes. One of the type deviceIndex which describes the
driver based id of the button and one of the type controllerIndex describing the
abstract id of the button. Additionally this node can contain a sub-node <but-
tonCorrection>which takes the attribute invert describing whether the button
value should be inverted. Typically a button delivers the value 1 if pressed and 0
otherwise.

∗ <axis>
Similar to the <button>-node this node has to take the attributes deviceIndex
and controllerIndex for mapping purposes. Additionally two more attributes,
describing thresholds for the axis, minValue and maxValue can be set in a sub-
node called <axisValues>. They can contain positive as well as negative integer or
floating point values. The <axis>-node can contain an additional sub-node called
<axisCorrection>. This node takes the two attributes scale and offset.

∗ <sensor>
Like the <button>-node and the <axis>-node this node has to take the attributes
deviceIndex and controllerIndex for mapping purposes. Additionally it can
contain several nodes for adjustment. The <coordinateSystemCorrection>-node
which is similar to a common <transformation>-node but omitting the scale orien-
tation attribute is used for modifying a sensor transformation in general. Another
sub-node the <positionCorrection>-node takes the attributes translation and
scale in order to perform additional fine tuning. The same approach is used by
the additional <orientationCorrection>-node which uses rotation as an argument.

<?xml version="1.0" encoding="UTF -8"?>

<!DOCTYPE controllerManager SYSTEM "http: //dtd.invrs.org/controllerManager_v1 .0a4.

dtd" >

<controllerManager version="1.0a4">

<controller buttons="2" axes="1" sensors="1">

<device type="VrpnDevice">

<arguments >

<arg key="" value="" />

</arguments >

<button deviceIndex="0" controllerIndex="0">

<buttonCorrection invert="true" />

</button >

<button deviceIndex="1" controllerIndex="1" />

<axis deviceIndex="0" controllerIndex="0">

29

Chapter 3 - Input Interface 3.1. Controller Manager

<axisValues minValue=" -513" maxValue="11378" />

</axis>

<axis deviceIndex="1" controllerIndex="1" />

<sensor deviceIndex="0" controllerIndex="0">

<coordinateSystemCorrection >

<translation x="0" y="0" z="0" />

<rotation x="" y="" z="" />

<scale x="" y="" z="" />

</coordinateSystemCorrection >

<positionCorrection >

<translation x="" y="" z="" />

<scale x="" y="" z="" />

</positionCorrection >

<orientationCorrection >

<rotation x="" y="" z="" />

</orientationCorrection >

</sensor >

<sensor deviceIndex="1" controllerIndex="1" />

</device >

</controller >

</controllerManager >

Listing 3.2: exampleControllerManager.xml

3.1.1 Supported Devices

The inVRs framework supports so far four different types of devices. It makes use of a variety
of external libraries in order to abstract input. Right now GLUT 2, trackD3, VRPN4 [THS+01]
and a so called UDP device are supported. Developing your own device is straight forward and is
described in detail in the Going Immersive Tutorial.
Most devices support buttons, axes and sensors. Some of them can be configured specifically by
using the argument vectors. The following subsections introduce the available devices an describe
their additional arguments if available.

GlutCharKeyboardDevice

The GlutCharKeyboardDevice takes input from the GLUT keyboard function. It is implemented
in the class GlutCharKeyboardDevice. The keyboard supports the use of buttons. When using
OpenSG as a scene graph GLUT is typically already installed.

GlutMouseDevice

The GlutMouseDevice takes input from the GLUT mouse function. This device makes additional
use of an argument vector. It is implemented in the class GlutMouseDevice. These devices make
use of axes, representing the 2D mouse coordinates and additional wheel input, as well as buttons.

• axisReleaseSpeed
A value which has to be set for fine tuning the mapping from the mouse on an axis. If the
value is chosen to low the movement might appear bumpy. In case it is to high the axis
update might lag behind. A common value for this attribute is 20.

GlutSensorEmulatorDevice

This device is used to emulate 3D tracking sensors with ordinary GLUT input. The implementation
can be found in the class GlutSensorEmulatorDevice. It is used to emulate a 6DOF or several

2http://www.opengl.org/resources/libraries/glut/
3http://www.mechdyne.com/integratedSolutions/software/products/trackd/trackd.htm
4http://www.cs.unc.edu/Research/vrpn/

30

http://www.inVRs.org/doxygen//classGlutCharKeyboardDevice.html
http://www.inVRs.org/doxygen//classGlutMouseDevice.html
http://www.inVRs.org/doxygen//classGlutSensorEmulatorDevice.html
http://www.opengl.org/resources/libraries/glut/
http://www.mechdyne.com/integratedSolutions/software/products/trackd/trackd.htm
http://www.cs.unc.edu/Research/vrpn/

Chapter 3 - Input Interface 3.1. Controller Manager

6DOF sensors by using input from conventional desktop devices like mice and keyboards. This
device makes additional use of an argument vector. The possible arguments of that device are:

• numberOfSensors
Describes the amount of sensors to be emulated.

• switchSensorButton
A button id, which toggles between the different sensors.

• switchTransformationTargetButton
A button id, which is used to toggle between the transformation targets. Transformation
targets are either translation or rotation of the current sensor.

• switchAxesButton
A button id, which toggles between the access control of a sensor axis.

UdpDevice

Often it becomes necessary to abstract input even more, for example when your input device is
not directly connected to your machine running the inVRs application. This device communicates
with an external input server. It is implemented in the class UdpDevice.
Additionally the server has to be set up which communicates with the UDP device. These server
are normally very specific to devices and have to be implemented by the user. Examples for the
server are provided in the inVRs source distribution.

TrackdDevice

The support of trackD devices has to be added externally. The implementation can be found in
the class TrackdDevice. TrackD as a library makes use of shared memory segments in which the
data of the controller (buttons and joystick) as well as the data of the tracker (sensor data) are
written.
This device makes additional use of an argument vector. The possible arguments of that device
are:

• controllerKey
The id of the shared memory segment to which the controller data is to be written. The
data consists of axes and buttons.

• trackerKey
The id of the shared memory segment to which the data of the tracking system is written
to. The data consists of 6DOF sensors.

VrpnDevice

Alternatively to trackD the open source library VRPN can be used to preprocess input data.
This library has to be additionally installed. It is implemented in the class VrpnDevice. VRPN
supports buttons, axes and 6DOF sensors.

• deviceID
The id of the VRPN tracking server e.g. iotracker@140.78.198.157

• numSensors
An integer value describing the amount of used sensors.

• numButtons
Describes the amount of used buttons.

• numAxes
The number of axes.

31

http://www.inVRs.org/doxygen//classUdpDevice.html
http://www.inVRs.org/doxygen//classTrackdDevice.html
http://www.inVRs.org/doxygen//classVrpnDevice.html

Chapter 3 - Input Interface 3.2. Summary

3.2 Summary

This chapter has given an overview of the configuration of the input interface of the inVRs frame-
work. So far input from arbitrary input devices is handled by the controller manager. This
manager abstracts and exposed data gathered from the libraries GLUT, trackD, VRPN and data
provided from the network. The configuration of the different libraries for the use with inVRs has
been explained in detail.

32

Chapter 4

Output Interface

The output interface of inVRs is designed to support graphical output on a scene graph level and
audio output with the help of external audio libraries. The configuration of the output interface
contains references to the chosen module. It is parsed and evaluated by the OutputInterface
class.
So far this class is very basic and simply provides a reference to the used scene graph interface.
The OpenSGSceneGraphInterface is implemented following the same architecture as a module
and thus acts as a plugin for the OutputInterface. The configuration takes up to three attributes:

• name
This attribute describes the name of the interface to be included for output.

• configFile
This setup file describes name of the configuration file for the output interface.

• libraryName
In case the name of the library differs to the input file the name of the library can be provided
separately.

<?xml version="1.0"?>

<!DOCTYPE outputInterface SYSTEM "http://dtd.invrs.org/outputInterface_v1 .0a4.dtd">

<outputInterface version="1.0a4">

<module name="OpenSGSceneGraphInterface" configFile=""/>

</outputInterface >

Listing 4.1: exampleOutputInterface.xml

4.1 OpenSG Scene Graph Interface

Currently no specific configuration file is available for the OpenSG1 scene graph interface. It is
mainly used for extension. By supporting OpenSG as a scene graph it is easy to incorporate
all types of multi-display systems like CAVEs [CNSD+92] or curved installations like the i-Cone
[SG02].
A reasonable additional configuration could be the initial setup of graph operators.

1http://www.opensg.org/

33

http://www.inVRs.org/doxygen//classOutputInterface.html
http://www.inVRs.org/doxygen//classOpenSGSceneGraphInterface.html
http://www.inVRs.org/doxygen//classOutputInterface.html
http://www.opensg.org/

Chapter 4 - Output Interface 4.2. OpenSceneGraph Scene Graph Interface

4.2 OpenSceneGraph Scene Graph Interface

To allow for scene graph independence of the framework the interface to OpenSceneGraph2 is
currently under development.

4.3 Audio Interface

The interface to the OpenAL3 audio library is currently under development. The interface will
provide a list of sound files which will be loaded initially and can be replayed from inside an inVRs
application.

4.4 Summary

This chapter has briefly introduced the interface to possible scene graphs and audio libraries.
It is likely that the chapter will be extended soon, since an implementation of the interface to
OpenSceneGraph as well as OpenAL is currently under development.

2http://www.openscenegraph.org/
3http://www.openal.org/

34

http://www.openscenegraph.org/
http://www.openal.org/

Chapter 5

Navigation Module

The configuration of the navigation module always contains three different nodes which are used to
set up the three types of navigation models. It is parsed by the Navigation class and successively
by the individual models that are derived from the classes OrientationModel, TranslationModel
and SpeedModel.

• <translationmodel>
The translation model describes in which direction the movement of the camera or the
object attached to the navigation module takes place. A variety of models exist which will
be explained in Section 5.1.1. The parameter for this node is type describing the name of the
chosen model. Further configuration which is model specific can be found in the argument
vector.

• <orientationmodel>
The orientation model describes what orientation is to be kept during the navigation. As
with the translation models a variety of models exist which are explained in detail in Section
5.1.2. The parameter of the orientation model is type describing the name of the model.
Additionally a value for the parameter angle has to be parsed defining the speed of the ori-
entation change. All further configuration is dependent on the chosen model and is described
in a model specific argument vector.

• <speedmodel>
This model defines the speed of the navigation. Besides the name of the model to be used
indicated by the parameter type the speed model takes an additional parameter. The second
parameter speed scales the speed which is to be applied by the speed model. A list of possible
speed models is provided in Section 5.1.3. As the other transformation models the speed
models make use of the argument vector.

The following configuration shows an example of a complete navigation setup. When using the
navigation module it is important to check the compatibility in between the individual models.
One has to be careful as well when the models are exchanged or when the input controller is
exchanged.

<?xml version="1.0"?>

<!DOCTYPE navigation SYSTEM "http://dtd.invrs.org/navigation_v1 .0a4.dtd">

<navigation version="1.0a4">

<translationModel type="TranslationViewDirectionButtonStrafeModel">

<arguments >

<arg key="frontIdx" type="uint" value="3"/>

<arg key="backIdx" type="uint" value="4"/>

<arg key="leftIdx" type="uint" value="5"/>

<arg key="rightIdx" type="uint" value="6"/>

</arguments >

35

http://www.inVRs.org/doxygen//classNavigation.html
http://www.inVRs.org/doxygen//classOrientationModel.html
http://www.inVRs.org/doxygen//classTranslationModel.html
http://www.inVRs.org/doxygen//classSpeedModel.html

Chapter 5 - Navigation Module 5.1. Navigation Models

</translationModel >

<orientationModel type="OrientationDualAxisModel" angle="10">

<arguments >

<arg key="xAxisIdx" type="int" value="0"/>

<arg key="yAxisIdx" type="int" value="1"/>

<arg key="buttonIdx" type="int" value="1"/>

</arguments >

</orientationModel >

<speedModel type="SpeedMultiButtonModel" speed="5">

<arguments >

<arg key="accelButtonIndices" type="string" value="3 4 5 6"/>

</arguments >

</speedModel >

</navigation >

Listing 5.1: exampleNavigationModule.xml

5.1 Navigation Models

A large set of independent models is already available. Details on the models used for navigation
with the theoretical background can be found in [AHKV04].
All models can be set independently. The provided models do not influence other models in any
way, meaning the description on how the orientation is to be set is for example independent from
the movement direction, unless the same input channels are used.

5.1.1 Translation Models

All used translation models have to be derived from the class TranslationModel. A translation
model describes the direction of the resulting matrix of the navigation module. Model specific
parameters are provided by an argument vector.

TranslationViewDirectionModel

This model is implemented in the class TranslationViewDirectionModel. The movement direc-
tion is always identical to the view direction when this translation model is used.

TranslationViewDirectionButtonStrafeModel

This model makes use of four different buttons in order to indicate the movement direction in
combination with the view direction. The implementation of the model can be found in the class
TranslationViewDirectionButtonStrafeModel. It is possible to set the translation in the view
direction, negative to the view direction and to the left or the right of the view direction, by
pressing the according buttons.

• frontIndex
The id of the button used to move in the view direction.

• backIndex
The id of the button used to move in the negative view direction.

• leftIndex
The id of the button used to strafe left from view direction.

• rightIndex
The id of the button used to strafe right from view direction.

36

http://www.inVRs.org/doxygen//classTranslationModel.html
http://www.inVRs.org/doxygen//classTranslationViewDirectionModel.html
http://www.inVRs.org/doxygen//classTranslationViewDirectionButtonStrafeModel.html

Chapter 5 - Navigation Module 5.1. Navigation Models

TranslationViewDirectionAxisStrafeModel

The class TranslationViewDirectionAxisStrafeModel is responsible for parsing and evaluating
the given model. With this model it is possible to set the translation in the view direction, negative
to the view direction and to the left or the right of the view direction, by pressing the according
axis in a positive or negative direction.

• leftRightIndex
The index of the axis used for left and right translation relative to the view direction.

• frontBackIndex
The index of the axis used for front and back translation relative to the view direction.

TranslationSensorViewDirectionModel

The model is designed for the use with immersive displays incorporating position tracking. It
makes uses of a 6DOF sensor. The implementation of the model can be found in the class
TranslationSensorViewDirectionModel. The translation vector points initially in the view di-
rection. It is adjusted by adding the orientation of the used sensor.

• sensorIndex
The index of the sensor to be used.

• ignoreYAxis
In case this boolean attribute is set to true, the y-axis of the sensor is ignored.

5.1.2 Orientation Models

The orientation models are used to define the orientation during navigation. They are all derived
from the class OrientationModel. Model specific parameters are provided by an argument vector.

OrientationSingleAxisModel

The model can be used for changing the orientation around the Y-axis via a single axis value.
A use case for this model could be a navigation mode realizing walking on a 2-dimensional flat
terrain. This orientation model is implemented in OrientationSingleAxisModel.

• axisIndex
The index of the axis to be used.

• minThreshold
The minimum axis value which is taken as input (values below this threshold are ignored)

OrientationDualAxisModel

This model makes use of two axis values for input and a button value. It can be used to control the
orientation around all three axes by a combination of these two controller axes in combination with
a controller button. One controller axis (defined by argument yAxisIndex) always controls the
rotation around the local X-axis (which corresponds to rotation upwards/downwards). The second
controller axis (defined by argument xAxisIndex) can be used to change the orientation around the
local Y-axis (left/right) or the local Z-axis (clockwise/counterclockwise). The destination rotation
axis is defined by the controller button value (defined by argument buttonIndex). If the button is
pressed then the Z-axis is used, otherwise the rotation around the Y-axis is executed. A common
use case for this model is when a mouse device is used for input. This model is implemented in
the class OrientationDualAxisModel.

37

http://www.inVRs.org/doxygen//classTranslationViewDirectionAxisStrafeModel.html
http://www.inVRs.org/doxygen//classTranslationSensorViewDirectionModel.html
http://www.inVRs.org/doxygen//classOrientationModel.html
http://www.inVRs.org/doxygen//classOrientationSingleAxisModel.html
http://www.inVRs.org/doxygen//classOrientationDualAxisModel.html

Chapter 5 - Navigation Module 5.1. Navigation Models

• xAxisIndex
The index of the axis to be used for rotation around the Y-axis (if button is not pressed) or
Z-axis (if button is pressed).

• yAxisIndex
The index of the axis to be used for rotation around the x-axis.

• buttonIndex
The index of the button which has to be pressed for changing the target rotation axis.

OrientationButtonModel

The orientation in this model is designed to be used with six different buttons. Each of the buttons
is used change the rotation around one of the three rotation axes either in positive or negative
direction. It is implemented by the class OrientationButtonModel.

• downIndex
The index of the button used for downward rotation.

• upIndex
The index of the button used for upward rotation.

• leftIndex
The index of the button used for left rotation.

• rightIndex
The index of the button used for right rotation.

• cwIndex
The index of the button used for clockwise rotation.

• ccwIndex
The index of the button used for counter clockwise rotation.

OrientationSensorModel

This model is implemented in the class OrientationSensorModel. When this model is used the
orientation is changed according to the orientation of a single sensor. It makes use of an argument
vector and can the the following parameters:

• sensorIndex
The index of the sensor to be used.

• minThreshold
The minimum rotation angle for each axis to be taken into account

• mirrorAdjXFactor, mirrorAdjYFactor, mirrorAdjZFactor
Optional arguments for mirroring the rotation axes of the sensor orientation

• rotationAdjAxisX, rotationAdjAxisY, rotationAdjAxisZ, rotationAdjAngleDeg
Optional arguments for correcting the rotation of the controller sensor orientation input

5.1.3 Speed Models

All speed models are derived from the class SpeedModel. They are used to describe the movement
speed during the navigation. As with the orientation and translation models all model specific
parameters are provided by an argument vector.

38

http://www.inVRs.org/doxygen//classOrientationButtonModel.html
http://www.inVRs.org/doxygen//classOrientationSensorModel.html
http://www.inVRs.org/doxygen//classSpeedModel.html

Chapter 5 - Navigation Module 5.1. Navigation Models

SpeedFixedSpeedModel

This model is the simplest implementation of a speed model. It is implemented in the the class
SpeedFixedSpeedModel. A constant speed value is taken from the initial configuration of the
navigation stored inside the speed attribute of the <speedmodel>-node.

• useTimestep
Optional argument which defines if the timestep should be multiplied (which is done be
default) or not. This can be useful when the outcome of the navigation should be used as
input for some timestep independent values, like the force which should be applied to an
object.

SpeedButtonModel

This class makes use of two buttons to determine the speed. Its implementation can be found in
the class SpeedButtonModel.

• accelButtonIndex
This is the index used to identify the button for acceleration.

• decelButtonIndex
This index points to a button used for deceleration.

SpeedMultiButtonModel

Several buttons are used in order to define the speed when using this model. It is implemented in
the class SpeedMultiButtonModel.

• accelButtonIndices
A list of button indices which are used for acceleration.

• decelButtonIndices
A list of button indices which are used for deceleration.

SpeedAxisModel

An axis is used to define the motion speed when this model is used. The implementation of the
model can be found in the class SpeedAxisModel.

• axisIndex
This is the index of the axis to be used. Positive and negative values can accelerate and
decelerate.

• minThreshold
If the axis provides a value over the threshold the value used for speed manipulation otherwise
it is not used.

SpeedDualAxisModel

The model is implemented in the class SpeedDualAxisModel. It makes use of two axes to manip-
ulate the speed.

• axis1Index
This is the index of the first axis to be used. Positive and negative values can accelerate and
decelerate.

• axis2Index
This is the index of the second axis to be used. Positive and negative values can accelerate
and decelerate.

39

http://www.inVRs.org/doxygen//classSpeedFixedSpeedModel.html
http://www.inVRs.org/doxygen//classSpeedButtonModel.html
http://www.inVRs.org/doxygen//classSpeedMultiButtonModel.html
http://www.inVRs.org/doxygen//classSpeedAxisModel.html
http://www.inVRs.org/doxygen//classSpeedDualAxisModel.html

Chapter 5 - Navigation Module 5.2. Summary

5.2 Summary

This chapter has given a brief overview on the setup of the navigation module. Three categories of
models for translation, orientation and speed which are composed into a resulting transformation
matrix were presented.
Since a variety of implementations exist in the different categories the configuration of the imple-
mentations was described in depth in the according sub-sections.

40

Chapter 6

Interaction Module

The configuration of the interaction module has to contain at least six different nodes, a seventh
node is optional. Each of these nodes specifies a transition function for the interaction automa-
ton of the inVRs framework. It is parsed by the Interaction class and successively by the
models for the transition functions which are derived from the classes StateActionModel and
StateTransitionModel. From the later class two child classes are derived again for further in-
heritance; the ManipulationChangeModel and SelectionChangeModel.
More detail on the inner workings of the interaction module can be found in the Medieval Town
Tutorial and the Programmers’ Guide.

• <stateActionModels>
Models of this type are executed when the state machine is in one of the three interaction
states.

– <idleActionModel>
This model is used for operations which are constantly executed during the idle state,
when no object is selected or currently manipulated. Often the idle model is omitted.

– <selectionActionModel>
This model is used for the operations which are constantly executed during object
selection. A common use of the model is highlighting the currently selected entity.

– <manipulationActionModel>
This model is used for the operations which are constantly executed during object
manipulation. It works typically closely together with the chosen cursor model.

• <stateTransitionModels>
In order to implement a change from one state to another state, the following transition
modules have to be configured.

– <selectionChangeModel>
The selection change model is used to define the method of selection when the interac-
tion automaton is still in an idle state.

– <unselectionChangeModel>
If the change from selection state back into the idle state takes place models of this
type are used. They are typically the same models as the selection models applied in
an inverse manner.

– <manipulationConfirmationModel>
In case the user wants to manipulate a selected object, the state has to change into
manipulation which is realised by models of this type.

– <manipulationTerminationModel>
With this model it is possible to determine the behavior when switching from an active

41

http://www.inVRs.org/doxygen//classInteraction.html
http://www.inVRs.org/doxygen//classStateActionModel.html
http://www.inVRs.org/doxygen//classStateTransitionModel.html
http://www.inVRs.org/doxygen//classManipulationChangeModel.html
http://www.inVRs.org/doxygen//classSelectionChangeModel.html

Chapter 6 - Interaction Module 6.1. Interaction Models

entity manipulation back into the idle state. Typically the same model is used for
manipulation termination as for manipulation confirmation.

<?xml version="1.0"?>

<!DOCTYPE interaction SYSTEM "http://dtd.invrs.org/interaction_v1 .0a4.dtd">

<interaction version="1.0a4">

<stateActionModels >

<selectionActionModel type="HighlightSelectionActionModel">

<arguments >

<arg key="modelType" type="string" value="OSG"/>

<arg key="modelPath" type="string" value="box.osg"/>

</arguments >

</selectionActionModel >

<manipulationActionModel type="HomerManipulationActionModel">

<arguments >

<arg key="usePickingOffset" type="bool" value="true"/>

</arguments >

</manipulationActionModel >

</stateActionModels >

<stateTransitionModels >

<selectionChangeModel type="LimitRayCastSelectionChangeModel">

<arguments >

<arg key="rayDistanceThreshold" type="float" value="5"/>

</arguments >

</selectionChangeModel >

<unselectionChangeModel type="LimitRayCastSelectionChangeModel">

<arguments >

<arg key="rayDistanceThreshold" type="float" value="5"/>

</arguments >

</unselectionChangeModel >

<manipulationConfirmationModel type="ButtonPressManipulationChangeModel">

<arguments >

<arg key="buttonIndex" type="int" value="0"/>

</arguments >

</manipulationConfirmationModel >

<manipulationTerminationModel type="ButtonPressManipulationChangeModel">

<arguments >

<arg key="buttonIndex" type="int" value="0"/>

</arguments >

</manipulationTerminationModel >

</stateTransitionModels >

</interaction >

Listing 6.1: exampleInteractionModule.xml

6.1 Interaction Models

A variety of interaction models are provided by the inVRs framework which can be combined
to be used together as an interaction technique. All of these models have to be set in order as
previously described to provide a valid technique.

6.1.1 Idle Action Models

The code of the idle action models is constantly executed during the idle state of the framework.
They are derived from the class StateActionModel. Only one header is provided so far to represent
the class IdleActionModel. Future implementation might use this state.

42

http://www.inVRs.org/doxygen//classStateActionModel.html
http://www.inVRs.org/doxygen//classIdleActionModel.html

Chapter 6 - Interaction Module 6.1. Interaction Models

6.1.2 Selection Action Models

These models are used during the selection task of the interaction. Models of this class are derived
from the superclass StateActionModel. As long as the user is in the selection state the configured
model is executed.

HighlightSelectionActionModel

This model is implemented in the according class HighlightSelectionActionModel and performs
a highlighting of the selected object. An additional semi-transparent object is displayed in a
pulsating manner around the selected object.

• modelType
The type of the model describes the object type which could be for example 3DS or VRML.

• modelPath
The path where the model for highlighting can be found.

6.1.3 Manipulation Action Models

These models are used during the manipulation task of the interaction. All of these models
are derived from the superclass StateActionModel. The same mechanisms as for the selection
action or the idle action models are used. They are constantly executed when the user is in the
manipulation state.

VirtualHandManipulationActionModel

The model is used in the virtual hand interaction technique. It is implemented in the class
VirtualHandManipulationActionModel. When this model is active a direct mapping from the
sensor input on the VirtualHandCursorModel takes place.

HomerManipulationActionModel

This model is used to implement the HOMER interaction technique. The model is implemented
in the class HomerManipulationActionModel. When the user leaves the selection state and enters
the manipulation state the cursor is moved to the object which is to be manipulated. In order to
implement a HOMER interaction technique the HOMER cursor model should be set up as well
inside the user configuration.

• usePickingOffset
If this attribute is set to true the cursor moves to the selected object at the first collision
point. If it is set to false it moves to the centre of the object.

6.1.4 Selection Change and Unselection Change Models

These models are derived from the class SelectionChangeModel. It is possible to use them for
both, the selection and as an inverse operation the unselection of objects.

RayCastSelectionChangeModel

This model is implemented in the class RayCastSelectionChangeModel. It is used for ray cast
selection and unselection of entities. If a collision between ray originating from the cursor position
and an entity takes place the automaton switches into selection state. If it is already in the
selection state and no collision between the ray and the entity is detected the state is changed
back to idle.

43

http://www.inVRs.org/doxygen//classStateActionModel.html
http://www.inVRs.org/doxygen//classHighlightSelectionActionModel.html
http://www.inVRs.org/doxygen//classStateActionModel.html
http://www.inVRs.org/doxygen//classVirtualHandManipulationActionModel.html
http://www.inVRs.org/doxygen//classVirtualHandCursorModel.html
http://www.inVRs.org/doxygen//classHomerManipulationActionModel.html
http://www.inVRs.org/doxygen//classSelectionChangeModel.html
http://www.inVRs.org/doxygen//classRayCastSelectionChangeModel.html

Chapter 6 - Interaction Module 6.2. Summary

VirtualHandSelectionChangeModel

The model is implemented in the class VirtualHandSelectionChangeModel. It is probably the
most traditional model when using VEs and tracking systems. Objects can be selected by placing
the cursor in the inside of the model. The GoGo interaction technique for example can use a
virtual hand model in case the GoGo cursor model is used inside the user configuration.

LimitRayCastSelectionChangeModel

The implementation of the model can be found in the class LimitRayCastSelectionChangeModel.
It is very similar to the ray cast selection model. But instead of using an infinite ray a line of a
defined length drawn from the cursor is used for entity selection and unselection.

• rayDistanceThreshold
This attribute describes the length of the line used for selection.

6.1.5 Manipulation Confirmation and Termination Models

These models are implementations of the ManipulationChangeModel. This type of models can
be used for the state change from selection to manipulation and vice versa.

ButtonPressStateTransitionModel

The model is implemented in the class ButtonPressStateTransitionModel. It is used for chang-
ing between interaction states once a button is pressed.

• buttonIndex
The index of the button to be pressed in order to change between two states.

6.2 Summary

This chapter has briefly introduced the seven transition functions which have to be configured in
the form of interaction models.
A variety of interaction techniques exist and are implemented for the inVRs framework. The
available models used to compose an interaction technique were introduced and their specific
configuration was described.

44

http://www.inVRs.org/doxygen//classVirtualHandSelectionChangeModel.html
http://www.inVRs.org/doxygen//classLimitRayCastSelectionChangeModel.html
http://www.inVRs.org/doxygen//classManipulationChangeModel.html
http://www.inVRs.org/doxygen//classButtonPressStateTransitionModel.html

Chapter 7

Network Module

The setup of the network module is kept very slim. A node describes the ports where the applica-
tion tries to communicate with, while another node is used for setting the local IP address. The
configuration is parsed and evaluated by the class Network.
In the standard implementation of the inVRs network module all transformations passed down by
the TransformationDistributionModifier are sent via UPD to all participants and all events
distributed by the EventManager are transmitted via TCP.
Two nodes are used for configuring the network module.

• <ports>
This node takes two arguments TCP describing the port for TCP communication and UDP
describing the port for UDP communication.

• <localIP>
The node can be configured with the attribute value which is to be set to the local IP
address. In case two instances of an inVRs applications are launched on the same machine,
this attribute has to be set different to localhost.

<?xml version="1.0"?>

<!DOCTYPE network SYSTEM "http://dtd.invrs.org/network_v1 .0a4.dtd">

<network >

<ports TCP="8081" UDP="8082" />

<localIP value="140.178.104.34" />

</network >

Listing 7.1: exampleNetworkModule.xml

7.1 Summary

A very short chapter introducing the a brief setup of the inVRs standard network module con-
figuration. The basic module allows only to set up the different ports were it communicates with
other applications. When more than one instance are launched on a single machine the IP address
has to be configured.
This configuration is to be significantly enhanced when other implementations of the network
module are used.

45

http://www.inVRs.org/doxygen//classNetwork.html
http://www.inVRs.org/doxygen//classTransformationDistributionModifier.html
http://www.inVRs.org/doxygen//classEventManager.html

Chapter 8

Outlook

This document has given a detailed overview on the configuration of the inVRs framework with
its components. Initially conventions for naming, standard nodes and the reasons behind the file
and path system were given. The general configuration has introduced the path setup as well as
the basic component setup of the framework.
The system core with its sub-components was introduced in the second chapter. The user database
hosting configuration for user representation and transformation of the user and the cursor was
described. The world database used for storage and setup was explained with its components the
tiles, the entities and the environments. The two managers for event and transformation manage-
ment were briefly introduced, where the setup of the event manager cannot be configured yet.
The input interface configuration has illustrated how to integrate a variety of input devices and
merge them together in an abstract controller. The subsequent chapter has given an idea on how
to extend the output interface, which is unfortunately not configurable as well so far.
The configuration of the standard modules was described. The navigation module uses three dif-
ferent types of models in order to implement a flexible configuration of the navigation. Similar
mechanisms are used by the interaction module to implement the interaction techniques by con-
figuring transition functions. The configuration for the network module is kept very brief so far
and designed for future extension.
Readers of this document should be now able to configure an inVRs application, setup the com-
ponents and layout a VE.

8.1 Future Work

It is a document which will be constantly updated with additional information regarding interac-
tion models and transition models as they are updated during the development of the framework.
The main components which will have to be extended considering the configuration of the inVRs
framework are:

• Event Manager

• Output Interface

• Network Module

To ease the creation of configuration files, an update on the inVRs editor is under development.
It allows to graphically align and layout the VE and finally generate configurations for the world
database.

46

Chapter 8 - Outlook 8.2. Acknowledgments

8.2 Acknowledgments

The authors of the inVRs framework would like to thank the contributors of the core code, the tools
as well as people who helped administrating the project for their selfless efforts and achievements.
We would also like to thank all the users supporting us and evaluating the framework.

47

Bibliography

[AHKV04] Christoph Anthes, Paul Heinzlreiter, Gerhard Kurka, and Jens Volkert. Navigation
models for a flexible, multi-mode vr navigation framework. In ACM SIGGRAPH
on Virtual Reality Continuum and Its Applications in Industry (VRCAI ’04), pages
476–479, Singapore, June 2004. ACM Press.

[ALBV07] Christoph Anthes, Roland Landertshamer, Helmut Bressler, and Jens Volkert. Man-
aging transformations and events in networked virtual environments. In ACM Inter-
national MultiMedia Modeling Conference (MMM ’07), volume 4352 of Lecture Notes
in Computer Science (LNCS), pages 722–729, Singapore, January 2007. Springer.

[AV06] Christoph Anthes and Jens Volkert. invrs - a framework for building interactive
networked virtual reality systems. In Michael Gerndt and Dieter Kranzlmüller, edi-
tors, International Conference on High Performance Computing and Communications
(HPCC ’06), volume 4208 of Lecture Notes in Computer Science (LNCS), pages 894–
904, Munich, Germany, September 2006. Springer.

[BH97] Douglas A. Bowman and Larry F. Hodges. An evaluation of techniques for grabbing
and manipulating remote objects in immersive virtual environments. In ACM Sym-
posium on Interactive 3D Graphics (SI3D ’97), pages 35–38, Providence, RI, USA,
April 1997. ACM Press.

[BLAV06] Helmut Bressler, Roland Landertshamer, Christoph Anthes, and Jens Volkert. An
efficient physics engine for virtual worlds. In medi@terra ’06, pages 152–158, Athens,
Greece, October 2006.

[CNSD+92] Carolina Cruz-Neira, Daniel J. Sandin, Thomas A. Defanti, Robert V. Kenyon, and
John C. Hart. The cave: Audio visual experience automatic virtual environment.
Communications of the ACM, 35(6):64–72, June 1992.

[HJAA05] Adrian Haffegee, Ronan Jamieson, Christoph Anthes, and Vassil N. Alexandrov. Tools
for collaborative vr application development. In Vaidy S. Sunderam, Geert Dick van
Albada, Peter M. A. Sloot, and Jack J. Dongarra, editors, International Conference
on Computational Science (ICCS ’05), volume 3516 of Lecture Notes in Computer
Science (LNCS), pages 350–358, Atlanta, GA, USA, May 2005. Springer.

[PBWI96] Ivan Poupyrev, Mark Billinghurst, Suzanne Weghorst, and Tadao Ichikawa. The go-
go interaction technique: Non-linear mapping for direct manipulation in vr. In ACM
Symposium on User Interface Software and Technology (UIST ’96), pages 79–80,
Seattle, WA, USA, November 1996. ACM Press.

[Rei02] Dirk Reiners. OpenSG: A Scene Graph System for Flexible and Efficient Realtime
Rendering for Virtual and Augmented Reality Applications. PhD thesis, Technische
Universität Darmstadt, Mai 2002.

[SG02] Andreas Simon and Martin Göbel. The i-cone - a panoramic display system for virtual
environments. In Pacific Conference on Computer Graphics and Applications (PG
’02), pages 3–7, Beijing, China, October 2002. IEEE Computer Society.

48

Bibliography

[THS+01] Russell M. Taylor II, Thomas C. Hudson, Adam Seeger, Hans Weber, Jeffrey Juliano,
and Aron T. Helser. Vrpn: A device-independent, network-transparent vr peripheral
system. In ACM Symposium on Virtual Reality Software and Technology (VRST ’01),
pages 55–61, Alberta, Canada, November 2001. ACM Press.

49

List of Figures

1.1 The inVRs Configuration Hierarchy . 1

50

Listings

1.1 Example of an Argument Vector . 2
1.2 Example for a Transformation Node . 3
1.3 Example for a Representation Node . 3
2.1 general.xml . 7
2.2 exampleModules.xml . 9
2.3 systemCore.xml . 9
2.4 exampleUserDatabase.xml . 10
2.5 exampleAvatar.xml . 11
2.6 exampleAvataraAvatar.xml . 12
2.7 exampleVirtualHandCursorModel.xml . 13
2.8 exampleHomerCursorModel.xml . 14
2.9 exampleGoGoCursorModel.xml . 14
2.10 exampelHeadPositionUserTransformationModel.xml 15
2.11 exampleSimpleCursorRepresentation.xml . 15
2.12 exampleInteractionCursorRepresentation.xml . 16
2.13 exampleWorldDatabase.xml . 17
2.14 exampleEntity.xml . 17
2.15 exampleTile.xml . 18
2.16 exampleEnvironmentLayout.xml . 19
2.17 exampleEnvironment.xml . 20
2.18 exampleTransformationManager.xml . 21
3.1 exampleInputInterface.xml . 28
3.2 exampleControllerManager.xml . 29
4.1 exampleOutputInterface.xml . 33
5.1 exampleNavigationModule.xml . 35
6.1 exampleInteractionModule.xml . 42
7.1 exampleNetworkModule.xml . 45
8.1 argumentVector v1.0a4.dtd . 53
8.2 transformation v1.0a4.dtd . 53
8.3 representation v1.0a4.dtd . 54
8.4 generalConfig v1.0a4.dtd . 54
8.5 modules v1.0a4.dtd . 54
8.6 systemCore v1.0a4.dtd . 54
8.7 userDatabase v1.0a4.dtd . 55
8.8 simpleAvatar v1.0a4.dtd . 55
8.9 avataraAvatar v1.0a4.dtd . 56
8.10 cursorTransformationModel v1.0a4.dtd . 56
8.11 simpleCursorRepresentation v1.0a4.dtd . 56
8.12 interactionCursorRepresentation v1.0a4.dtd . 56
8.13 userTransformationModel v1.0a4.dtd . 57
8.14 worldDatabase v1.0a4.dtd . 57
8.15 entityTypes v1.0a4.dtd . 57
8.16 tiles v1.0a4.dtd . 58

51

Listings

8.17 environmentLayout v1.0a4.dtd . 58
8.18 environment v1.0a4.dtd . 58
8.19 eventManager v1.0a4.dtd . 59
8.20 transformationManager v1.0a4.dtd . 59
8.21 inputInterface v1.0a4.dtd . 60
8.22 controllerManager v1.0a4.dtd . 60
8.23 outputInterface v1.0a4.dtd . 61
8.24 navigation v1.0a4.dtd . 61
8.25 interaction v1.0a4.dtd . 62
8.26 network v1.0a4.dtd . 63

52

Appendix

DTD

Argument Vector

<!ELEMENT arguments (arg*)>

<!ATTLIST arguments

version (1.0a4) #REQUIRED >

<!ELEMENT arg EMPTY >

<!ATTLIST arg

key CDATA #REQUIRED

type CDATA #IMPLIED

value CDATA #REQUIRED >

Listing 8.1: argumentVector v1.0a4.dtd

Transformation

<!ELEMENT transformation (translation?,rotation?,scale?,scaleOrientation ?)>

<!ELEMENT translation EMPTY>

<!ATTLIST translation

x CDATA #REQUIRED

y CDATA #REQUIRED

z CDATA #REQUIRED >

<!ELEMENT rotation EMPTY >

<!ATTLIST rotation

x CDATA #REQUIRED

y CDATA #REQUIRED

z CDATA #REQUIRED

angleDeg CDATA #IMPLIED

angleRad CDATA #IMPLIED >

<!ELEMENT scale EMPTY>

<!ATTLIST scale

x CDATA #REQUIRED

y CDATA #REQUIRED

z CDATA #REQUIRED >

<!ELEMENT scaleOrientation EMPTY>

<!ATTLIST scaleOrientation

x CDATA #REQUIRED

y CDATA #REQUIRED

z CDATA #REQUIRED

angleDeg CDATA #IMPLIED

angleRad CDATA #IMPLIED >

Listing 8.2: transformation v1.0a4.dtd

53

Listings

Representation

<!ENTITY % transformation SYSTEM "transformation_v1 .0a4.dtd" >

%transformation;

<!ELEMENT representation ((file | reference), transformation ?)>

<!ATTLIST representation

copy CDATA #IMPLIED >

<!ELEMENT file EMPTY >

<!ATTLIST file

type CDATA #REQUIRED

name CDATA #REQUIRED >

<!ELEMENT reference EMPTY>

<!ATTLIST reference

sourceId CDATA #REQUIRED >

Listing 8.3: representation v1.0a4.dtd

General Config

<!ELEMENT generalConfig (general , paths)>

<!ATTLIST generalConfig

version (1.0a4) #REQUIRED >

<!ELEMENT general ANY>

<!ELEMENT paths (root , path*)>

<!ELEMENT root EMPTY >

<!ATTLIST root

directory CDATA #REQUIRED >

<!ELEMENT path EMPTY >

<!ATTLIST path

name CDATA #REQUIRED

directory CDATA #REQUIRED >

Listing 8.4: generalConfig v1.0a4.dtd

Modules

<!ELEMENT modules (module *)>

<!ATTLIST modules

version (1.0a4) #REQUIRED >

<!ELEMENT module EMPTY>

<!ATTLIST module

name CDATA #REQUIRED

configFile CDATA #REQUIRED

libraryName CDATA #IMPLIED >

Listing 8.5: modules v1.0a4.dtd

System Core

<!ELEMENT systemCore (worldDatabase , userDatabase , transformationManager ,

eventManager ?)>

<!ATTLIST systemCore

version (1.0a4) #REQUIRED >

54

Listings

<!ELEMENT worldDatabase EMPTY >

<!ATTLIST worldDatabase

configFile CDATA #REQUIRED >

<!ELEMENT userDatabase EMPTY >

<!ATTLIST userDatabase

configFile CDATA #REQUIRED >

<!ELEMENT transformationManager EMPTY>

<!ATTLIST transformationManager

configFile CDATA #REQUIRED >

<!ELEMENT eventManager EMPTY >

<!ATTLIST eventManager

configFile CDATA #REQUIRED >

Listing 8.6: systemCore v1.0a4.dtd

User Database

<!ELEMENT userDatabase (avatar?, cursorRepresentation?, cursorTransformationModel?,

userTransformationModel ?)>

<!ATTLIST userDatabase

version (1.0a4) #REQUIRED >

<!ELEMENT avatar EMPTY>

<!ATTLIST avatar

configFile CDATA #REQUIRED >

<!ELEMENT cursorRepresentation EMPTY>

<!ATTLIST cursorRepresentation

configFile CDATA #REQUIRED >

<!ELEMENT cursorTransformationModel EMPTY>

<!ATTLIST cursorTransformationModel

configFile CDATA #REQUIRED >

<!ELEMENT userTransformationModel EMPTY>

<!ATTLIST userTransformationModel

configFile CDATA #REQUIRED >

Listing 8.7: userDatabase v1.0a4.dtd

Simple Avatar

<!ENTITY % representation SYSTEM "representation_v1 .0a4.dtd" >

%representation;

<!ELEMENT SimpleAvatar (name?, representation)>

<!ATTLIST SimpleAvatar

version (1.0a4) #REQUIRED >

<!ELEMENT name EMPTY >

<!ATTLIST name

value CDATA #REQUIRED >

Listing 8.8: simpleAvatar v1.0a4.dtd

Avatara Avatar

55

Listings

<!ENTITY % representation SYSTEM "representation_v1 .0a4.dtd" >

%representation;

<!ELEMENT AvataraAvatar (name?, representation , texture?, animations ?)>

<!ATTLIST AvataraAvatar

version (1.0a4) #REQUIRED >

<!ELEMENT name EMPTY >

<!ATTLIST name

value CDATA #REQUIRED >

<!ELEMENT texture EMPTY>

<!ATTLIST texture

file CDATA #REQUIRED >

<!ELEMENT animations (animation *)>

<!ATTLIST animations

smooth CDATA #IMPLIED

speed CDATA #IMPLIED

default CDATA #IMPLIED >

<!ELEMENT animation EMPTY>

<!ATTLIST animation

name CDATA #REQUIRED

file CDATA #REQUIRED >

Listing 8.9: avataraAvatar v1.0a4.dtd

Cursor Transformation Model

<!ELEMENT cursorTransformationModel (model)>

<!ATTLIST cursorTransformationModel

version (1.0a4) #REQUIRED >

<!ELEMENT model (arguments ?)>

<!ATTLIST model

name CDATA #REQUIRED >

Listing 8.10: cursorTransformationModel v1.0a4.dtd

Simple Cursor Representation

<!ENTITY % representation SYSTEM "representation_v1 .0a4.dtd" >

%representation;

<!ELEMENT simpleCursorRepresentation (representation)>

<!ATTLIST simpleCursorRepresentation

version (1.0a4) #REQUIRED >

Listing 8.11: simpleCursorRepresentation v1.0a4.dtd

Interaction Cursor Representation

<!ENTITY % representation SYSTEM "representation_v1 .0a4.dtd" >

%representation;

<!ELEMENT interactionCursorRepresentation (idleModel , selectionModel?,

manipulationModel ?)>

<!ATTLIST interactionCursorRepresentation

version (1.0a4) #REQUIRED >

56

Listings

<!ELEMENT idleModel (representation)>

<!ATTLIST idleModel >

<!ELEMENT selectionModel (representation)>

<!ATTLIST selectionModel >

<!ELEMENT manipulationModel (representation)>

<!ATTLIST manipulationModel >

Listing 8.12: interactionCursorRepresentation v1.0a4.dtd

User Transformation Model

<!ELEMENT userTransformationModel (model)>

<!ATTLIST userTransformationModel

version (1.0a4) #REQUIRED >

<!ELEMENT model (arguments ?)>

<!ATTLIST model

name CDATA #REQUIRED >

Listing 8.13: userTransformationModel v1.0a4.dtd

World Database

<!ELEMENT worldDatabase (entityTypes*, tiles*, environmentLayout ?)>

<!ATTLIST worldDatabase

version (1.0a4) #REQUIRED >

<!ELEMENT entityTypes EMPTY>

<!ATTLIST entityTypes

configFile CDATA #REQUIRED >

<!ELEMENT tiles EMPTY>

<!ATTLIST tiles

configFile CDATA #REQUIRED >

<!ELEMENT environmentLayout EMPTY >

<!ATTLIST environmentLayout

configFile CDATA #REQUIRED >

Listing 8.14: worldDatabase v1.0a4.dtd

Entity Types

<!ENTITY % representation SYSTEM "representation_v1 .0a4.dtd" >

%representation;

<!ELEMENT entityTypes (entityType *)>

<!ATTLIST entityTypes

version (1.0a4) #REQUIRED >

<!ELEMENT entityType (representation , implementationClass ?)>

<!ATTLIST entityType

typeId CDATA #REQUIRED

name CDATA #REQUIRED

fixed CDATA #IMPLIED

implementationClass CDATA #IMPLIED >

<!ELEMENT implementationClass ANY>

57

Listings

Listing 8.15: entityTypes v1.0a4.dtd

Tiles

<!ENTITY % representation SYSTEM "representation_v1 .0a4.dtd" >

%representation;

<!ELEMENT tiles (tile*)>

<!ATTLIST tiles

version (1.0a4) #REQUIRED >

<!ELEMENT tile (tileProperties , representation)>

<!ATTLIST tile

id CDATA #REQUIRED

name CDATA #REQUIRED >

<!ELEMENT tileProperties (size , adjustment)>

<!ELEMENT size (# PCDATA)>

<!ATTLIST size

xSize CDATA #REQUIRED

zSize CDATA #REQUIRED >

<!ELEMENT adjustment (# PCDATA)>

<!ATTLIST adjustment

height CDATA #REQUIRED

yRotation CDATA #REQUIRED >

Listing 8.16: tiles v1.0a4.dtd

Environment Layout

<!ELEMENT environmentLayout (tileGrid , environment *)>

<!ATTLIST environmentLayout

version (1.0a4) #REQUIRED >

<!ELEMENT tileGrid EMPTY >

<!ATTLIST tileGrid

xSpacing CDATA #REQUIRED

zSpacing CDATA #REQUIRED >

<!ELEMENT environment EMPTY>

<!ATTLIST environment

id CDATA #REQUIRED

configFile CDATA #REQUIRED

xLoc CDATA #REQUIRED

zLoc CDATA #REQUIRED >

Listing 8.17: environmentLayout v1.0a4.dtd

Environment

<!ENTITY % transformation SYSTEM "transformation_v1 .0a4.dtd" >

%transformation;

<!ELEMENT environment (tileMap , entryPoint*, entity *)>

<!ATTLIST environment

version (1.0a4) #REQUIRED >

58

Listings

<!ELEMENT tileMap (# PCDATA)>

<!ATTLIST tileMap

xDimension CDATA #REQUIRED

zDimension CDATA #REQUIRED >

<!ELEMENT entryPoint (# PCDATA)>

<!ATTLIST entryPoint

xPos CDATA #REQUIRED

yPos CDATA #REQUIRED

zPos CDATA #REQUIRED

xDir CDATA #REQUIRED

yDir CDATA #REQUIRED

zDir CDATA #REQUIRED >

<!ELEMENT entity (transformation)>

<!ATTLIST entity

id CDATA #REQUIRED

typeId CDATA #REQUIRED >

Listing 8.18: environment v1.0a4.dtd

Event Manager

<!ELEMENT eventManager (# PCDATA)>

<!ATTLIST eventManager

version (1.0a4) #REQUIRED >

Listing 8.19: eventManager v1.0a4.dtd

Transformation Manager

<!ENTITY % arguments SYSTEM "argumentVector_v1 .0a4.dtd" >

%arguments;

<!ELEMENT transformationManager (logFile?, mergerList?, pipeList ?)>

<!ATTLIST transformationManager

version (1.0a4) #REQUIRED >

<!ELEMENT logFile EMPTY>

<!ATTLIST logFile

name CDATA #REQUIRED >

<!ELEMENT mergerList (merger *)>

<!ATTLIST mergerList >

<!ELEMENT merger (inputPipe+, outputPipe+, arguments ?)>

<!ATTLIST merger

type CDATA #REQUIRED

id CDATA #REQUIRED >

<!ELEMENT inputPipe EMPTY>

<!ATTLIST inputPipe

srcComponent CDATA #IMPLIED

srcComponentName CDATA #IMPLIED

dstComponent CDATA #IMPLIED

dstComponentName CDATA #IMPLIED

pipeType CDATA #REQUIRED

objectClass CDATA #REQUIRED

objectType CDATA #REQUIRED

objectId CDATA #REQUIRED

fromNetwork CDATA #REQUIRED >

<!ELEMENT outputPipe EMPTY>

59

Listings

<!ATTLIST outputPipe

srcComponent CDATA #IMPLIED

srcComponentName CDATA #IMPLIED

dstComponent CDATA #IMPLIED

dstComponentName CDATA #IMPLIED

pipeType CDATA #REQUIRED

objectClass CDATA #REQUIRED

objectType CDATA #REQUIRED

objectId CDATA #REQUIRED

fromNetwork CDATA #REQUIRED >

<!ELEMENT pipeList (pipe*)>

<!ATTLIST pipeList >

<!ELEMENT pipe (modifier *)>

<!ATTLIST pipe

srcComponent CDATA #IMPLIED

srcComponentName CDATA #IMPLIED

dstComponent CDATA #IMPLIED

dstComponentName CDATA #IMPLIED

pipeType CDATA #REQUIRED

objectClass CDATA #REQUIRED

objectType CDATA #REQUIRED

objectId CDATA #REQUIRED

fromNetwork CDATA #REQUIRED >

<!ELEMENT modifier (arguments ?)>

<!ATTLIST modifier

type CDATA #REQUIRED >

Listing 8.20: transformationManager v1.0a4.dtd

Input Interface

<!ELEMENT inputInterface (module *)>

<!ATTLIST inputInterface

version (1.0a4) #REQUIRED >

<!ELEMENT module EMPTY>

<!ATTLIST module

name CDATA #REQUIRED

configFile CDATA #REQUIRED

libraryName CDATA #IMPLIED >

Listing 8.21: inputInterface v1.0a4.dtd

Controller Manager

<!ENTITY % transformation SYSTEM "transformation_v1 .0a4.dtd" >

%transformation;

<!ENTITY % arguments SYSTEM "argumentVector_v1 .0a4.dtd" >

%arguments;

<!ELEMENT controllerManager (controller)>

<!ATTLIST controllerManager

version (1.0a4) #REQUIRED >

<!ELEMENT controller (device *)>

<!ATTLIST controller

buttons CDATA #REQUIRED

axes CDATA #REQUIRED

sensors CDATA #REQUIRED >

60

Listings

<!ELEMENT device (arguments?, button*, axis*, sensor *)>

<!ATTLIST device

type CDATA #REQUIRED >

<!ELEMENT button (buttonCorrection ?)>

<!ATTLIST button

deviceIndex CDATA #REQUIRED

controllerIndex CDATA #REQUIRED >

<!ELEMENT buttonCorrection EMPTY>

<!ATTLIST buttonCorrection

invert CDATA #REQUIRED >

<!ELEMENT axis ((axisCorrection|axisValues)?)>

<!ATTLIST axis

deviceIndex CDATA #REQUIRED

controllerIndex CDATA #REQUIRED >

<!ELEMENT axisCorrection EMPTY>

<!ATTLIST axisCorrection

offset CDATA #REQUIRED

scale CDATA #REQUIRED >

<!ELEMENT axisValues EMPTY>

<!ATTLIST axisValues

minValue CDATA #REQUIRED

maxValue CDATA #REQUIRED >

<!ELEMENT sensor (coordinateSystemCorrection?, positionCorrection?,

orientationCorrection ?)>

<!ATTLIST sensor

deviceIndex CDATA #REQUIRED

controllerIndex CDATA #REQUIRED >

<!ELEMENT coordinateSystemCorrection (translation?, rotation?, scale ?)>

<!ATTLIST coordinateSystemCorrection >

<!ELEMENT positionCorrection (translation?, scale?)>

<!ATTLIST positionCorrection >

<!ELEMENT orientationCorrection (rotation ?)>

<!ATTLIST orientationCorrection >

Listing 8.22: controllerManager v1.0a4.dtd

Output Interface

<!ELEMENT outputInterface (module *)>

<!ATTLIST outputInterface

version (1.0a4) #REQUIRED >

<!ELEMENT module EMPTY>

<!ATTLIST module

name CDATA #REQUIRED

configFile CDATA #REQUIRED

libraryName CDATA #IMPLIED >

Listing 8.23: outputInterface v1.0a4.dtd

Navigation Module

<!ENTITY % arguments SYSTEM "argumentVector_v1 .0a4.dtd" >

%arguments;

61

Listings

<!ELEMENT navigation (translationModel?, orientationModel?, speedModel ?)>

<!ATTLIST navigation

version (1.0a4) #REQUIRED >

<!ELEMENT translationModel (arguments ?)>

<!ATTLIST translationModel

type CDATA #REQUIRED >

<!ELEMENT orientationModel (arguments ?)>

<!ATTLIST orientationModel

type CDATA #REQUIRED

angle CDATA #REQUIRED >

<!ELEMENT speedModel (arguments ?)>

<!ATTLIST speedModel

type CDATA #REQUIRED

speed CDATA #REQUIRED >

Listing 8.24: navigation v1.0a4.dtd

Interaction Module

<!ENTITY % arguments SYSTEM "argumentVector_v1 .0a4.dtd" >

%arguments;

<!ELEMENT interaction (stateActionModels , stateTransitionModels)>

<!ATTLIST interaction

version (1.0a4) #REQUIRED >

<!ELEMENT stateActionModels (idleActionModel?, selectionActionModel?,

manipulationActionModel ?)>

<!ATTLIST stateActionModels >

<!ELEMENT idleActionModel (arguments ?)>

<!ATTLIST idleActionModel

type CDATA #REQUIRED >

<!ELEMENT selectionActionModel (arguments ?)>

<!ATTLIST selectionActionModel

type CDATA #REQUIRED >

<!ELEMENT manipulationActionModel (arguments ?)>

<!ATTLIST manipulationActionModel

type CDATA #REQUIRED >

<!ELEMENT stateTransitionModels (selectionChangeModel?, unselectionChangeModel?,

manipulationConfirmationModel?, manipulationTerminationModel ?)>

<!ATTLIST stateTransitionModels >

<!ELEMENT selectionChangeModel (arguments ?)>

<!ATTLIST selectionChangeModel

type CDATA #REQUIRED >

<!ELEMENT unselectionChangeModel (arguments ?)>

<!ATTLIST unselectionChangeModel

type CDATA #REQUIRED >

<!ELEMENT manipulationConfirmationModel (arguments ?)>

<!ATTLIST manipulationConfirmationModel

type CDATA #REQUIRED >

<!ELEMENT manipulationTerminationModel (arguments ?)>

<!ATTLIST manipulationTerminationModel

type CDATA #REQUIRED >

62

Listings

Listing 8.25: interaction v1.0a4.dtd

Network Module

<!ELEMENT network (ports , localIP ?)>

<!ATTLIST network

version (1.0a4) #REQUIRED >

<!ELEMENT ports EMPTY>

<!ATTLIST ports

TCP CDATA #REQUIRED

UDP CDATA #REQUIRED >

<!ELEMENT localIP EMPTY>

<!ATTLIST localIP

value CDATA #REQUIRED >

Listing 8.26: network v1.0a4.dtd

63

	Abstract
	Contents
	Introduction
	Configuration Overview
	Concepts and Considerations
	Argument Vector
	Transformation Node
	Representation Node
	Naming
	File References
	Versioning

	Outline

	System Core and General Setup
	Modules
	System Core
	User Database
	Avatar
	Cursor Transformation Model
	User Transformation Model
	Cursor Representation

	World Database
	Entity Types
	Tile
	Environment and Environment Layout

	Event Manager
	Transformation Manager
	Modifiers
	Mergers

	Summary

	Input Interface
	Controller Manager
	Supported Devices

	Summary

	Output Interface
	OpenSG Scene Graph Interface
	OpenSceneGraph Scene Graph Interface
	Audio Interface
	Summary

	Navigation Module
	Navigation Models
	Translation Models
	Orientation Models
	Speed Models

	Summary

	Interaction Module
	Interaction Models
	Idle Action Models
	Selection Action Models
	Manipulation Action Models
	Selection Change and Unselection Change Models
	Manipulation Confirmation and Termination Models

	Summary

	Network Module
	Summary

	Outlook
	Future Work
	Acknowledgments

	Bibliography
	List of Figures
	Listings
	Appendix

