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Abstract

The free-form deformation is a popular modeling method for solid geometries: A lattice is su-
perimposed over a model. Then the user deforms the lattice by selecting and displacing points
of the lattice. The model form changes in dependence of the lattice deformation by calculating
parametric curves.
Such a deformation tool is provided as a module for the inVRs framework and a static library
for OpenSG. Methods for parametrized deformation, like bending or twisting an object, are im-
plemented as well. The Deformation module works along with the inVRs Network module for
synchronizing multiuser applications.
This document describes how to use the Deformation module with the inVRs framework and the
FFD library with an OpenSG application.
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Chapter 1

Introduction

One of the most important approaches for object deformation in 3D was presented in the com-
puter graphics journal by Alan H. Barr in 1984 [Bar84]: Conventional axis based operations like
translation or rotation are extended to hierarchical deformation operations like twisting or bend-
ing. His publication introduces rules for global deformations, which explicitly modify the global
space coordinates of a point, and local deformations, which modify the tangent space of a model,
inclusive rules for the normal vector transformation.
Thomas W. Sederberg and Scott R. Parry [SP86] developed the free-form deformation (FFD)
technique which deforms the space (defined by a lattice superimposed over a model) of an object
and the object in dependence (by Bézier interpolation). This method has been advanced by S.
Coquillart [Coq90] in order to allow a non-parallelpiped, even user-defined lattice. Coquillart’s
achievement is known as extended free-form deformation (EFFD).
Yu-Kuang Chang and Alyn P. Rockwood [cha94] proposed a different approach for the FFD: They
warp an object along a Bézier curve by using the de Casteljau algorithm [Cas59].
The provided FFD package for OpenSG and inVRs is based on [SP86]. Each library provides func-
tions for parametric lattice deformation: Bend, twist and taper, which are implemented according
to [Bar84].

1.1 Overview

This manual gives an introduction to the technical fundamentals of the FFD technique and explains
how to use the provided package. The manual should also familiarize the user with architectural
considerations and give an overview on the context of the implemented classes.
The usage of the OpenSG library and the inVRs module is shown in a sample application for each
variant. All relevant functions of the API are listed and explained in this document as well.
The following list gives an overview about the functionality of the FFD API:

• Creation of a lattice for any part of the scenegraph by using its AABB or a customized axis
aligned box

• Execution of the bend, twist, taper deformation functions on the lattice

• Deformation of the lattice by applying any customized 4x4 matrix

• Selecting and displacing single or multiple lattice cell points

• FFD calculation with Bézier interpolation using any user-defined polynomial degree.

• Reverting deformation actions

Furthermore, the following visualization and helper methods are implemented:

• (De-)Selection of single or multiple lattice cell points
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Chapter 1 - Introduction 1.2. Outline

• Changing color for lattice lines, points (different colors for user defined and internal cell
divisions), and selected points

• Switching between the visualization of internal or user-defined cell divisions

• Visualization of the lattice deformation on the lattice solely or on both, the lattice and the
model

inVRs specific functionality:

• Synchronization for multiple clients (which can connect to an ongoing session)

• Individualized visualization (e.g. of lattice colors, selections, execution preference)

1.2 Outline

This manual presents the following topics:

• Chapter 2 - Theoretical Background
In this chapter the fundamentals of the free form deformation and the used global deforma-
tion methods are presented.

• Chapter 3 - Using FFDlib and FFDinVRsLib
This chapter explains the architecture of the libraries. A documentation of the API and an
introduction to the usage of the libraries are presented as well.

• Chapter 4 - Outlook
The final chapter summarizes the main aspects of the manual and envisions ideas about
future enhancement.
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Chapter 2

Theoretical Background

Free-form deformation is based on parametric curves: A lattice is superimposed over a model.
The points of the lattice define the control points of the parametric curve. After displacing lattice
points model vertices are interpolated in dependence.
The implemented procedure of the FFD can be described as the following steps:

• Superimpose a partitioned lattice over a model

• Copy all affected model vertices

• Assign each vertex the lattice cell index it resides in

• Deform the lattice by displacing cell corners

• In order to apply lattice deformation to the model, transform model coordinates into cell
relative coordinates

• Do the interpolation calculation on the relative model coordinates

• Transform interpolated coordinates into lattice absolute coordinates

• Overwrite model vertices

• Reset the lattice corner positions by recalculating the new AABB

• For further deformations restart with the third step and reassign the cell indices to the model
vertices

2.1 FFD

In the first step (lattice construction), the dimensions and the form of the model’s axis aligned
bounding box (AABB) are applied to the lattice. The user can specify the niceness, but also the
scope of the deformation, by setting the number of subdivisions for the lattice. Internally, each
partition is subdivided into lattice cells as illustrated in Figure 2.1.
These internal subdivisions define the degree of the Bernstein polynomial and build the proper
control points for the Bézier curve as explained later.
After the lattice has been built, when accessing model vertices the lattice coordinate system has
to be considered as well. The lattice local model coordinates are denoted as (s, t, u) coordinates,
their position in the lattice coordinate system is defined as [SP86]:

X = X0 + sS + tT + uU (2.1)

where X0 is the origin of the lattice, X is the current model vertex and (S, T, U) are the axis of
the lattice coordinate system.
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Chapter 2 - Theoretical Background 2.1. FFD

Figure 2.1: Lattice with user-defined and internally managed subdivisions

As described by Sederberg and Parry [SP86] (s, t, u) coordinates can be found using the following
equations:

s =
TXU(X −X0)

TXU · S
, t =

SXU(X −X0)

SXU · T
, u =

SXT (X −X0)

SXT · U
(2.2)

In the next step mapping the model vertex to the cell it resides in has to be done. This is necessary
because the cell index for a model vertex may change during deformation. The mapping functions
are defined by:

si = b (Xx −X0x)

lx
c, ti = b

(Xy −X0y )

ly
c, ui = b (Xz −X0z )

lz
c (2.3)

(si, ti, ui) are the cell indices, lx, ly, lz are defined by the length of the lattice in each dimension,
X is the model vertex, and X0 is the lattice origin.
Then, to deform an object, the positions of the internal lattice cell corners get changed by either
selecting and moving a single corner or by applying a parameterized deformation.
The calculation of the interpolated position of a model vertex is based on the trivariate tensor
product Bernstein polynomial in this implementation:

Xffd =

l∑
i=0

(
l

i

)
(1− s)l−isi(

m∑
j=0

(
m

j

)
(1− t)m−jtj(

n∑
k=0

(
n

k

)
(1− u)n−kukPijk)) (2.4)

The summation iterates over all control points Pijk. l, m, n denote the degree of the polynomial
in each dimension, which is implemented as a single value for all three dimensions with the same
extend. The default value is three, but can be defined by the user during lattice creation. Using
a higher degree will yield more curve control points, but also increase computational costs.
The base functions for a cubic Bézier curve with degree three are defined by four (degree + 1 )
cubic Bernstein polynomials [WP00], also shown in Figure 2.2:

B1(t) = (1− t)3; (2.5)

B2(t) = 3t(1− t)2; (2.6)

B3(t) = 3t2(1− t); (2.7)

B4(t) = t3; (2.8)

B1(t) +B2(t) +B3(t) +B4(t) = 1; (2.9)
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Chapter 2 - Theoretical Background 2.2. Deformation functions

Figure 2.2: Bézier base functions

Each control point in each dimension defines one base curve B. A relative model vertex coordinate
describes the weight t for the interpolation calculation in each dimension.
In the final step, the result of the polynomial function is applied to the (s, t, u) coordinate, which
is the new model vertex position after transforming it back to an absolute value:

Xx = Cix + slx, Xy = Ciy + tly, Xz = Ciz + ulz (2.10)

Ci is the coordinate of the lattice cell origin a model vertex resided in before deformation. l is the
length of the lattice in the concerning dimension
If the lattice is reset to the new AABB, the algorithm restarts with the third step: Creating the
lattice cell index map for all model vertices.

2.2 Deformation functions

As mentioned in the introduction, some functions for lattice deformation are implemented accord-
ing to [Bar84]: Bend, twist, and taper, which extent the basic transformation functions rotation,
translation, and scale.
In the following the mathematical foundations for the operations bend, twist, and taper are ex-
plained. The equations have been taken from [Bar84] and [Par08].

2.2.1 Bending

The bending function deforms the object into a curved shape. One side of the object is being
stretched while the other side is being compressed. The bending operation is implemented as
function with three parameters:

• Bending rate: Defines the bending angle in rad.

• Center : Determines the center of the bend. The value has to be in range from 0 to 1
(0 → bottom, 0.5 → center, 1 → top of the bending axis). Figure 2.3 shows the effect of
changes to the center value.

• Axis: Bending is performed along this axis.

Bending an object along the Y-axis:

bendingregion = zmin; zmax

bendingcenter = y0; zmin
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Chapter 2 - Theoretical Background 2.2. Deformation functions

Figure 2.3: Box with bending deformation. The bending rate is 45 ◦C in the negative (upper left)
/ positive (upper right) direction. The bending center is 0.5 (upper), 0 (lower left), 1 (lower right)

θ =

{
z − zmax z < zmax

zmax − zmin else
(2.11)

x′ = x (2.12)

y′ =


y0 − sin(θ)(z − 1

k ) ymin ≤ y ≤ ymax

y0 − sin(θ)(z − 1
k ) + cos(θ)(y − ymin) y ≤min

y0 − sin(θ)(z − 1
k ) + cos(θ)(y − ymin) y ≥ ymax

(2.13)

z′ =


cos(θ)(z − 1

k ) + 1
k ymin ≤ y ≤ ymax

cos(θ)(z − 1
k ) + 1

k + sin(θ)(y − ymin) y ≤min

cos(θ)(z − 1
k ) + 1

k + sin(θ)(y − ymin) y ≥ ymax

(2.14)

Minimum and maximum of the bending region are set to the lattice minimum and maximum. The
bending center is defined by (y0, zmin) for bending along the Y-axis.
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2.2.2 Tapering

Taper is the rejuvenation of an object along a chosen axis. The taper function scales the cross
section surface depending on the tapering axis value of the current coordinate. Applying the taper
function on a box will result in a pyramid, see Figure 2.4.

• Tapering factor : Determines the scaling of the basis at the bottom of the chosen axis (1→
no scale, < 1→ scale down, > 1→ scale up).

• Axis: Tapering occurs along this axis. For a negative axis value, the taper is performed
along the axis in the negative direction.

Tapering an object along the positive Z-axis:

Figure 2.4: Box with taper deformation and no scaling of the basis

f(z) =
max(z)− z

max(z)−min(z)
(2.15)

x′ = f(z)x (2.16)

y′ = f(z)y (2.17)

z′ = z (2.18)

2.2.3 Twisting

Twisting an object can be imagined as a rotation of the object in slices from bottom to top, while
each slice is rotated a bit more than the last one. The result of a twist deformation is shown in
Figure 2.5.
Axis and twist factor are the two parameters of this function:

• Twisting factor : Angle of the twist in rad. 2π defines a full twist.

• Axis: Twist occurs along this axis.

Twisting along the Z-Axis:
w = twistfactor (2.19)

x′ = xcos(wz)− ysin(wz) (2.20)
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Chapter 2 - Theoretical Background 2.3. Summary

Figure 2.5: Box with twist deformation along the Y-axis

y′ = xsin(wz) + ycos(wz) (2.21)

z′ = z (2.22)

Before applying any deformation function to an object, the object needs to be centered: The
object center is set to the origin. Otherwise the deformation would not be symmetric.
Bend, twist, and taper have been implemented as predefined functions for the lattice deformation.
A fourth function takes a deformation matrix as parameter and transforms each lattice cell corner
by the matrix in Barr’s global deformation manner. A second parameter, center, determines
whether the model should be translated to the origin or not.
In addition deforming the lattice manually by displacing single or multiple cell corners is possible
as illustrated in Figure 2.6.

Figure 2.6: Deformating by manual lattice cell point manipulation

2.3 Summary

This chapter has given an overview to the basics of the FFD. The provided libraries implement
a cubic Bézier function, which is based on Bernstein polynomials, for interpolation purposes, but
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any other polynomial bases could be used as well.
Theoretical background to the deformation functions bend, twist, and taper have been introduced.
The next chapter explains how to use the libraries and write own applications using the FFD.
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Chapter 3

Using the FFD libraries

The FFD implementation is available as static library for OpenSG and additionally as a module
for the inVRs framework. Both provide methods for managing lattices, executing deformation
operations, and customizing the visualization.
After a brief description of the architecture and functionality the API regarding OpenSG and
inVRs is explained.

3.1 Architecture

The FFD calculation, which uses the functions of the Bezier namespace for interpolation, is im-
plemented in the Lattice class. Bezier and Lattice are independent from the scene graph in
use.
Lattice operations, e.g. inserting or bending a lattice, are called actions. Each action is imple-
mented as a separate class and inherits from DAction or DeformAction (which again is derived
from DAction ):
All operations which actually deform the lattice inherit from DeformAction, general lattice op-
erations are derived directly from DAction. All lattices and actions are managed in the class
OpenSGLatticeActionDeque.
Lattice deforming actions are:

• BendDeformAction

• TwistDeformAction

• TaperDeformAction

• SetPointDeformAction

• GlobalDeformAction

General lattice operations are:

• InsertLatticeDAction

• ExecuteDAction

• RemoveLatticeDAction

In the following sections details about the architecture are explained for OpenSG and inVRs in
particular. Since the inVRs module is built upon the OpenSG implementation, both sections are
relevant for the inVRs specific part.
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Chapter 3 - Using the FFD libraries 3.1. Architecture

3.1.1 FFD library for OpenSG

If a user inserts a lattice, a new OpenSG Geometry node for lattice visualization is placed above
the subscene. Figure 3.1 shows a schematic view of the scenegraph before and after pasting the
lattice.

Figure 3.1: The VRML node represents the OpenSG subscene which is going to be deformed. The
lattice is placed above the VRML node and affects all children (right).

The visualization of the lattice is implemented in the OpenSGLatticeGeometry class. The lat-
tice Geometry is built on primitive types (GL POINTS, GL LINES) with single indexing. In
order to manipulate a Geometry in the scene, all model vertex coordinates are copied by the
OpenSGModelPointManager. When lattice deformations are applied to the model, all model vertex
coordinates are overwritten with the manipulated copy. The OpenSGModelPointManager ensures
that all coordinates are transformed into the correct coordinate system while reading and writing
data.
The main class, most relevant for the user, is the OpenSGDeformActionManager class. This static
class provides all necessary methods to insert a lattice, deform models, remove the lattice, and
alter the visualization parameters.

3.1.2 FFD Deformation module for InVRs

inVRs object transformation works on entire entities (here: OpenSG nodes). In order to gain ac-
cess to model vertices with inVRs, working on the level of OpenSG nodes is necessary. Therefore,
the implementation regarding deformations is a wrapper to map inVRs entities to OpenSG nodes.
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Chapter 3 - Using the FFD libraries 3.2. Basic API

The main class, InVRsDeformActionManager, provides all functionality for altering the visualiza-
tion, inserting, deforming, and removing a lattice.
Concerning the network, the module has to take care about persistent synchronization of all ac-
tions. If the Deformation module is used in a multi-user application, actions need to be sent to
all connected users. Therefore, each action is extended to an inVRs Event, which implements
encoding and decoding of the action parameters. For each action an event is created, encoded,
sent to all connected users, decoded, and executed locally.
If a new user connects to an ongoing session, sending a synchronization event, containing all ac-
tions and parameters for all entities, to the new user is triggered. On the recently joined users
side, the package is decoded and all actions are applied to the entities in the scene. Encoding and
decoding for this purpose is implemented in the class SyncDActionsEvent..

3.2 Basic API

The FFD libraries are easy to use, only an instance of the OpenSGDeformActionManager or
inVRsDeformActionManager is needed in order to use the full functionality of the package. The
following list summarizes the main steps:

• Get a static instance of OpenSGDeformActionManager or inVRsDeformActionManager (sin-
gleton) and call all further methods on this instance.

• Insert a lattice for any scene node.

• Deform the lattice with bend, twist, taper, deform, or setPoint.

• Execute the deformation on the model by running execute or revert it by removing the
lattice.

• Optionally set visualization settings (instant execution, lattice divisions, colors, wireframe/-
points/shaded model) as explained later.

• Clean up if the FFD module is no longer used.

Functions of the API are explained for OpenSG in the next section. Since inVRs function signa-
tures are very similar, only the differences are described.

3.2.1 OpenSG related API

OpenSGDeformActionManager All deformation methods are implemented in the class with
the same name OpenSGDeformActionManager.

• static OpenSGDeformActionManager* GetInstance()

Create and get a singleton instance of the static OpenSGDeformActionManager.

• static void Destroy()

Destroy the instance of OpenSGDeformActionManager and clean up allocated memory of
all classes in use.

• bool insertLattice(NodePtr subScene, int height, int width, int length,

size_t dim = 3, bool isMasked = false, gmtl::AABoxf aabb =

gmtl::AABoxf(gmtl::Vec3f(0, 0, 0), gmtl::Vec3f(0, 0, 0)),

float epsilon = 0.0001f)

Inserts a new lattice above the given subScene if the subScene node and none of its children
or parents have a lattice inserted, a new lattice will be created and the given node will be
managed by the OpenSGDeformActionManager. If the subScene node is managed already,
this method verifies that the last action was removeLattice or the action dequeue is empty.
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Chapter 3 - Using the FFD libraries 3.2. Basic API

The parameters height, width, and length set the lattice divisions in each dimension. dim
determines the polynomial degree. If isMasked is set to true, only model vertices of the
subscene which are inside the given aabb are affected. The default value for isMasked is
false. In this case the aabb is ignored and found internally, so that all model vertices of the
subscene reside in the bounding box. epsilon is a threshold which extends the AABB in
each dimension before calculating the relative model vertex coordinates. This is necessary
because of possible floating point imprecisions. The default value should be sufficient, but
needs to be increased if any assertions regarding cell indices occur.

• void removeLattice(NodePtr subScene)

Removes the lattice from the given node if the lattice is exactly one hierarchy above, as
inserted by insertLattice.

• void executeFfd(NodePtr subScene)

Executes the free-form deformation on all affected model vertices.

• void bend(NodePtr subScene, const float bendFactor, const float center,

const int axis)

Bends an object with bending angle in rad at center of bend along the bending axis. The
center of bend has to be in range from 0 to 1 (0 → bottom, 0.5 → center, 1 → top of the
bending axis). The bend operation is not invertible.

• void twist(NodePtr subScene, const float twistFactor, const int axis)

Twist an object with the given twistFactor in rad along the given axis. A twistFactor of 2π
defines a full twist. The twist operation is invertible.

• void taper(NodePtr subScene, const float taperFactor, const int axis)

Taper an object with the given taperFactor along the given axis. The top of the lattice is
set to the center. The basis of the lattice is scaled along the chosen axis, determined by the
taperFactor. (1→ no scale, < 1→ scale down, > 1→ scale up). The taper operation is not
invertible.

• void deform(NodePtr subScene, const gmtl::Matrix44f dMatrix, const bool

center = true)

Deforms the lattice with the customized matrix dMatrix. Actually each point of the lattice
is multiplied with the given matrix, using the GMTL method xform. If center is set to true,
the deformation is performed after setting the local center of model to the origin, which
results in a symmetric deformation. The customized deformation is invertible.

• void setPoint(NodePtr subScene, const gmtl::Vec3i index, const gmtl::Vec3f

position)

Set the position of a single lattice cell point. The lattice cell point index refers to the internal
subdivisions of a lattice.

• void setPoints(NodePtr subScene, const vector<gmtl::Vec3i>& indices,

const vector<gmtl::Vec3f>& positions)

Set the position of a vector of lattice cell points to different positions. Index and position
vector have to be of the same length.

• void setPoints(NodePtr subScene, const vector<gmtl::Vec3i>& indices,

const gmtl::Vec3f addPosition);

Add the same vector to all lattice cell points.

• gmtl::Vec3i getCellDivisions(NodePtr subScene)

Returns the number of the lattice divisions * internal subdivisions (polynomial degree).
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• vector<gmtl::Vec3i> getSelection(NodePtr subScene)

Returns a copy of the current selection indices.

• gmtl::AABoxf getAabb(NodePtr subScene)

Calculates and returns the AABB for the given subScene.

• int getNumOfDeques() const

Returns the number of currently managed action dequeues. Managed action dequeues also
include dequeues of nodes which do not have an active lattice at the moment.

• OpenSGLatticeActionDeque* getDaDeque(NodePtr subScene)

Returns a pointer to the action deque for the given subScene.

• bool undo(NodePtr subScene)

Reverts the last action if possible.

• void selectLatticeCellPoints(const vector<gmtl::Vec3i>& selectPoints,

NodePtr subScene, bool append = true)

Sets the lattice points with the index of selectPoints selected and changes their color to the
selection color.

• bool selectLatticeCellPoint(SimpleSceneManager* mgr, NodePtr subScene,

int x, int y, bool append = true)

Tries to select a lattice point for the given mouse coordinates x and y by performing the
OpenSG intersection test1. If the subScene gets hit, the nearest lattice cell point gets
calculated and selected. append determines whether the selected point should replace or
be added to the current selection. Returns true if selecting was possible.

• void unselectLatticeCellPoints(NodePtr subScene)

Clears the selection and updates the visualization by reseting the color for the lattice corners.

• bool unselectLatticeCellPoint(SimpleSceneManager* mgr, NodePtr subScene,

int x, int y)

Tries to unselect a lattice point by performing the same intersection test as selectLattice-
CellPoints does, but removes the lattice corner from the selection list if the hit succeeds.
Returns true if unselecting was successful.

• setShowAll(NodePtr subScene, bool showAll)

Toggle the visualization for internal subdivisions.

• setInstantExecution(NodePtr subScene, bool doExecute)

Toggles the execution calculation to be either performed on the lattice solely or on both, the
lattice and the model, by setting doExecute: If doExecute is true, the deformation will call
executeFFD for each deformation action done by the user, but no execute actions will be
inserted into the action dequeue until executeFFD is called explicitly.
If instant execution is toggled executeFFD is called, previous deformations to the lattice are
applied to the model, and the lattice is reset to the AABB. Then, if doExecute is set to
true, the OpenSGModelPointManager is assigned to create a copy of all model points of the
subScene, called a savepoint, which is necessary for the FFD calculation, especially if the
deformation should not be applied to the model at the end.
Setting doExecute to true and later back to false will not delete the created savepoint.

1http://www.oliver-abert.de/opensg/Traversal.html#TutorialTraversalActionsIntersect
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• dump()

Prints all actions of all current and past lattices, including nodes which do not have a lattice
present.

• dump(NodePtr subScene)

Prints all actions of the lattice of the subScene.

Actions are managed in the OpenSGLatticeActionDeque with regards to the order of their exe-
cution. Thus reverting actions is potentially possible:

• InsertLatticeDAction: Undo is supported.

• RemoveLatticeDAction: Undo is only supported if this remove has been done after an insert
or execute action.

• ExecuteDAction: Undo is only supported if the last action was insert or execute.

• DeformAction: The inverse deform method of a DeformAction is executed if the flag invert-
ible is set to true.

If reverting an action is successful, the last action in the dequeue is removed. For example,
executing the actions insert and remove lattice one after the other, gives the same visual result
as insert lattice and undo, but the state of dequeue is different. In the first variant, the dequeue
holds an insert and a remove action, in the second variant, the insert action is deleted and none
of both actions appear in the dequeue.
Visualization changes (e.g. altering the line color of the lattice) apply exactly to one lattice, so
different settings for different lattices in the scene are possible. These changes are not managed
as actions and are not affected by the undo action.

3.2.2 inVRs related API

InVRsDeformActionManager All deformation methods are implemented in the class of the
same name InVRsDeformActionManager. The implementation for inVRs has almost the same
signature as for OpenSG. The following explains the differences between the OpenSG and inVRs.

• static InVRsDeformActionManager* GetInstance()

Get the singleton instance of the InVRsDeformActionManager.

• void twist(Entity* entity, const float twistFactor, const int axis)

Sends an event to all connected users, causing them to execute the twist deformation with
given parameters locally.

• void twistLocal(Entity* entity, const float twistFactor, const int axis);

Each action has a method with the postfix Local. These methods can be used with inVRs
applications excluding the network module. No event will be sent and the action is executed
only locally.

• setInstantExecution(Entity* entity, bool doExecute)

Toggles the instant execution calculation for a given entity. Instant execution is only per-
formed on the local host and is not send to other participants. If instant execution is active,
executeFFD, insertLattice, and removeLattice the deformations on the model is the same
for all users. Between these actions only users having the doExecute flag set to true will see
results on the model, others see the deformations on the lattice solely.

All deformation methods take an inVRs Entity pointer instead of a OpenSG NodePtr as first
parameter. Also a local version of all deformation methods exist. Otherwise the signature of the
inVRs and OpenSG methods of the DeformationManagers are the same.
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3.3 Using FFDlib with OpenSG

A sample application for OpenSG is provided in FFDSample/main.cpp. This examples has a
usage description, which is displayed after pressing the key h and after starting the application.
The sample application allows users to play with the deformation tool in an interactive way. All
relevant deformation functions are used in the sample.
The following example summarizes how to use the FFD library by listing a method which performs
taper and bend to a certain node:

void bendAndTaper(NodePtr node)

{

OpenSGDeformActionManager* osgdam = OpenSGDeformActionManager :: GetInstance ();

if(osgdam != 0)

{

// insert a lattice with two subdivisions in each dimension above a certain

node

osgdam ->insertLattice(node , 2, 2, 2);

// taper the lattice along the x-axis and bend afterwards

osgdam ->taper(node , 1.0f, 1);

osgdam ->bend(node , gmtl::Math:: deg2Rad (5.0f), 0.5f, 1);

// apply lattice deformations to the node

osgdam ->executeFfd(node);

// remove the lattice

osgdam ->removeLattice(node);

}

}

Listing 3.1: Short FFD usage example for OpenSG applications

To free allocated memory call Destroy (before exiting the program at the latest) if the deformation
library is no longer used:

void keyboard(unsigned char k, int x, int y)

{

switch(k)

{

case 27:

{

OpenSGDeformActionManager :: Destroy ();

osgExit ();

exit (0);

}

// ...

}

}

Listing 3.2: Cleanup

3.4 Using FFD with inVRs

A sample application for inVRs is provided in FFDinVRsSample/main.cpp. This examples has a
usage description, which is displayed after pressing the key h and after starting the application.
The sample application allows users to play with the deformation tool in an interactive way. Also
all relevant deformation functions are used in the sample.
In the following all necessary steps for using the Deformation module are shown in a few code
examples.
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Extend initModules in order to initialize the Deformation module. For a multiuser application
also initialize the network module:

#include "InVRsDeformActionManager.h"

#include "Deformation.h"

Deformation* deformation;

void initModules(ModuleInterface* module)

{

if (module ->getName () == "Network")

network = (NetworkInterface *) module;

else if (module ->getName () == "Deformation")

deformation = (Deformation *) module;

}

Listing 3.3: Initialization of the Deformation module

Add the deformation event pipe handling in the display method:

void display(void)

{

SystemCore ::step();

float currentTimeStamp;

float dt;

currentTimeStamp = timer.getTime ();

dt = currentTimeStamp - lastTimeStamp;

// process the deformation pipe

deformation ->step(dt);

lastTimeStamp = currentTimeStamp;

mgr ->redraw (); // redraw the window

} // display

The following is a very short example to describe how to use the Deformation module to deform
an entity:

void bendAndTaper(Entity* entity)

{

InVRsDeformActionManager* invrsDam = InVRsDeformActionManager :: GetInstance ();

if(invrsDam != 0)

{

// insert a lattice with two subdivisions in each dimension above a certain

entity

invrsDam ->insertLattice(entity , 2, 2, 2);

// taper the lattice along the x-axis and bend afterwards

invrsDam ->taper(entity , 1.0f, 1);

invrsDam ->bend(entity , gmtl::Math:: deg2Rad (5.0f), 0.5f, 1);

// apply lattice deformations to the entity

invrsDam ->executeFfd(entity);

// remove the lattice

invrsDam ->removeLattice(entity);

}

}

Listing 3.4: Short FFD usage example for inVRs applications
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Add a call to the static Destroy in the cleanup routine to free allocated memory:

void cleanup ()

{

InVRsDeformActionManager :: Destroy ();

SystemCore :: cleanup ();

osgExit ();

}

Listing 3.5: Cleanup

In order to load the deformation module, the configuration and the deformation.xml must be
present.

<!-- Paths for Module Datastructure -->

<path name="NetworkConfiguration" path="config/modules/network/" />

<path name="DeformationConfiguration" path="config/modules/deformation/" />

Listing 3.6: Changes to general.xml

<modules >

<module name="Network" cfgPath="network.xml" />

<module name="Deformation" cfgPath="deformation.xml"/>

</modules >

Listing 3.7: Changes to modules.xml

The deformation.xml does not include any configuration at the moment

3.5 Summary

This chapter has introduced the FFD architecture. The API calls have been explained and demon-
strated by code examples.
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Chapter 4

Outlook

4.1 Future Work

Implementing optimization for the action dequeue would be useful, mainly for synchronizing de-
formations. A set of rules must be defined, e.g. consecutive setPoint calls changing the same point
can be merged to one call by accumulating the position changes.
Another optimization could be realized by updating only affected model vertex coordinates. This
could be done better by using a mesh datastructure which allows accessing neighbours of a vertex
easily.
For nicer results after interpolation, especially when deforming only a part of the model continuity
control is desired.
Advanced selection tools like smooth selection or methods for selecting whole regions would be
a nice feature. Also applying deformations weighted for single model vertices would enhance the
tool in a useful way.
Adding more deformation actions could be achieved easily. Implementing different interpolation
methods and providing an interface for switching the interpolation is an easy-to-realize feature as
well.
Extending the modeling possibilities to a sophisticated modeling tool, also with direct vertex ma-
nipulation, would be the ultimate goal. Support for animated FFD would be of great value for
the package.
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Appendix

Installing FFD

Building FFD with CMake

Building FFD libraries and samples with Code::Blocks (LINUX)

With CMake a Code::Blocks project can be created via command line:

cd cmake

cmake .. -G "CodeBlocks - Unix Makefiles"

The project can be found in the cmake directory, the name is the project name in capital letters
with the extension .cbp (e.g. FFDOSG.cbp).
Since Code::Blocks does not import the header files, select the project and choose “Add files re-
cursively..“ from the context menu (right mouse button) or the Project menu and choose the src
folder.

To execute the sample applications from Code::Blocks the working directory for the execution
needs to be changed: Activate the project and choose “Properties“ from the context menu. In the
tabulator “Build targets“ highlight the sample target and change the path of “Execution working
dir“ to point to the sample directory (FFDsample for the OpenSG or ffd inVRs samle for the
inVRs sample).
After compiling, building the target install copies the executables to the execution directory.
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